Home Practice
For learners and parents For teachers and schools
Textbooks
Full catalogue
Leaderboards
Learners Leaderboard Classes/Grades Leaderboard Schools Leaderboard
Pricing Support
Help centre Contact us
Log in

We think you are located in United States. Is this correct?

8.3 Polygons

8.3 Polygons (EMCJ9)

temp text
Proportionality in polygons

A plane, closed shape consisting of three or more line segments.

cb9f72c4b478508095327cbf2b9851d5.png

In previous grades we studied the properties of the following polygons:

Triangle b0a78d9fc09df15f80814bcfa4b01b0b.png Area \(= \frac{1}{2}b \times h\)
Parallelogram e8454ada25b3f0e9e164168d801a31ae.png Area \(= b \times h\)
Rectangle 63700d499f30f25b42facc8c06b43a0c.png Area \(= b \times h\)
Rhombus 173997eb4e188753779007f845ee14fa.png Area \(= \frac{1}{2} AC \times BD\)
Square b016b322860604c836787deda030a91f.png Area \(= s^{2}\)
Trapezium 67f53f162b51346a2d7388f47054cc71.png Area \(= \frac{1}{2}(a + b) \times h\)
Kite 89234220eb842155307f1aae91b79ffb.png Area \(= \frac{1}{2}(AC \times DB)\)

Worked example 1: Properties of polygons

\(ABCD\) is a rhombus with \(BD = \text{12}\text{ cm}\) and \(AB:BD = 3:4\).

1e7ad929a1d82f11032dbd394c2aadd5.png

Calculate the following (correct to two decimal places) and provide reasons:

  1. Length of \(AB\).
  2. Length of \(AO\).
  3. Area of \(ABCD\).

Use the ratio to determine the length of \(AB\)

\begin{align*} AB:BD &= 3:4 \\ \therefore \frac{AB}{BD} &= \frac{3}{4} \\ \frac{AB}{12} &= \frac{3}{4} \\ AB &= 12 \times \frac{3}{4} \\ &= \text{9}\text{ cm} \end{align*}

Calculate the length of \(AO\)

We use the properties of a rhombus and the theorem of Pythagoras to find \(AO\).

\[\begin{array}{rll} BD &= \text{12}\text{ cm} & \\ BO &= \text{6}\text{ cm} & \text{(diagonals bisect each other)} \\ \text{In } \triangle ABO, \quad A\hat{O}B &= \text{90}° & (\text{diagonals intersect at } \perp )\\ AO^{2} &= AB^{2} - BO^{2} & (\text{Pythagoras}) \\ &= 9^{2} - 6^{2} & \\ \therefore AO &= \sqrt{ 45} & \\ &= \text{6,71}\text{ cm} \end{array}\]

Determine the area of rhombus \(ABCD\)

\begin{align*} \text{Area } ABCD &= \frac{1}{2} AC \times BD \\ &= \frac{1}{2} (2 \times \sqrt{45})(12) \\ &= \text{80,50}\text{ cm$^{2}$} \end{align*}

Proportionality of polygons

Textbook Exercise 8.3

\(MNOP\) is a rectangle with \(MN : NO = 5:3\) and \(QN = \text{10}\text{ cm}\).

6c548ed37c8c54e4354cdc0c7346faae.png

Calculate \(MN\) (correct to \(\text{2}\) decimal places).

\[\begin{array}{rll} QN &= 10 & \\ \therefore NP &= 2 \times QN & (\text{diagonals bisect each other}) \\ &= 20 & \\ \text{In } \triangle NOP, \quad \hat{O} &= \text{90}° &(MNOP \text{ rectangle }) \\ \text{Let } MN &= 5x & \\ \text{And } NO &= 3x & \\ NP^{2} &= NO^{2} + OP^{2} & (\text{Pythagoras}) \\ (20)^{2} &= (3x)^{2} + (5x)^{2} & \\ 400 &= 9x^{2} + 25x^{2} & \\ 400 &= 34x^{2} & \\ \therefore x &= \sqrt{\frac{400}{34}} & \\ &= \text{3,43} \ldots & \\ \therefore MN &= 5x = \text{17,15}\text{ cm} & \end{array}\]

Calculate the area of \(\triangle OPQ\) (correct to \(\text{2}\) decimal places).

c1581fb62694595be2b9dbe2baf98d01.png

Consider the trapezium \(ABCD\) shown below. If \(t:p:q = 2:3:5\) and area \(ABCD = \text{288}\text{ cm$^{2}$}\), calculate \(t, p \text{ and } q\).

f3be7d51a178bfbe104b48e1a4bc2ce4.png
\begin{align*} \text{Let } t &= 2x \\ \text{And } p &= 3x \\ \text{And } q &= 5x \\ \text{Area } ABCD &= \frac{1}{2} (p + q) \times t \\ 288 &= \frac{1}{2} (3x + 5x ) \times 2x \\ 288 &= 8x^{2} \\ 36 &= x^{2} \\ \therefore 6 &= x \quad (\text{length always positive}) \\ \therefore t &= 2(6) = \text{12}\text{ cm} \\ p &= 3(6) = \text{18}\text{ cm} \\ q &= 5(6) = \text{30}\text{ cm} \end{align*}

\(ABCD\) is a rhombus with sides of length \(\frac{3}{2}x\) millimetres. The diagonals intersect at \(O\) and length \(DO = x\) millimetres. Express the area of \(ABCD\) in terms of \(x\).

6064b56cba2b03c3bde3ed23cf323476.png
\begin{align*} AD &= \frac{3}{2}x \\ DO&=x \\ AO^2&=\left ( \frac{3}{2}x \right )^2-x^2 \quad (\text{ Pythagoras})\\ &=\frac{9}{4}x^2-x^2\\ &=\frac{5}{4}x^2 \\ \therefore AO&=\frac{x\sqrt{5}}{2} \\ \therefore AC&=x\sqrt{5} \\ \text{Area }&=\frac{1}{2}AC\times BD\\ &=\frac{1}{2}\times x \sqrt{5} \times 2x \\ &= \sqrt{5} x^2 \end{align*}

In the diagram below, \(FGHI\) is a kite with \(FG = \text{6}\text{ mm}\), \(GK = \text{4}\text{ mm}\) and \(\frac{GH}{FI} = \frac{5}{2}\).

832ab654a3423eab8c6ed04b0cb07255.png

Determine \(FH\) (correct to the nearest integer).

\begin{align*} \frac{GH}{FI} &= \frac{5}{2} \\ \text{And } FG &= FI \quad (\text{adj. sides of kite equal}) \\ \frac{GH}{FG} &= \frac{5}{2} \\ \frac{GH}{6} &= \frac{5}{2} \\ \therefore GH &= \text{15}\text{ mm} \\ \text{In } \triangle FGK, \quad FG^{2} &= GK^{2} + FK^{2} \\ FK^{2} &= 6^{2} - 4^{2} \\ &= 36 - 16 \\ \therefore FK &= \sqrt{20} \\ \text{In } \triangle GKH, \quad GH^{2} &= GK^{2} + FH^{2} \\ 15^{2} &= 4^{2} + KH^{2} \\ 225 - 16 &= KH^{2} \\ \therefore KH &= \sqrt{209} \\ FH &= FK + KH \\ &= \sqrt{20} + \sqrt{209} \\ &= \text{19}\text{ mm} \end{align*}

Calculate area \(FGHI\).

\begin{align*} \text{Area } FGHI &= \frac{1}{2} GI \times FH \\ &= \frac{1}{2} (4 + 4)(19) \\ &= \text{76}\text{ mm$^{2}$} \end{align*}

\(ABCD\) is a rhombus. \(F\) is the mid-point of \(AB\) and \(G\) is the mid-point of \(CB\). Prove that \(EFBG\) is also a rhombus.

85037df4fe1735656f24f6f9b47c28d7.png
\[\begin{array}{rll} AF &= FB & (\text{given}) \\ AE &= EC & (\text{diagonals bisect}) \\ \therefore FE &\parallel BC & \\ \therefore FE &\parallel BG & \\ \therefore FE &= \frac{1}{2} BG & (\text{mid-point th.}) \\ FE &= BG & \\ \therefore EFBG & \text{ is a parallelogram} & (\text{one pair opp. sides} = \text{ and } \parallel) \\ \therefore FB &\parallel EG & (\text{opp. sides of parm.}) \\ \text{And } AB &= BC & (\text{adj. sides of rhombus}) \\ \therefore \frac{1}{2} AB &= \frac{1}{2} BC & \\ \therefore FB &= BG = GE = EF & \\ \therefore EFBG &(\text{is a rhombus}) & (\text{parm. with }4 \text{ equal sides}) \end{array}\]