Home Practice
For learners and parents For teachers and schools
Textbooks
Full catalogue
Leaderboards
Learners Leaderboard Classes/Grades Leaderboard Schools Leaderboard
Pricing Support
Help centre Contact us
Log in

We think you are located in United States. Is this correct?

2.4 Exponential equations

2.4 Exponential equations (EMAW)

Exponential equations have the unknown variable in the exponent. Here are some examples:

\begin{align*} {3}^{x + 1} & = 9 \\ {5}^{t} + 3 \times {5}^{t - 1}& = 400 \end{align*}

If we can write a single term with the same base on each side of the equation, we can equate the exponents. This is one method to solve exponential equations.

Important: if \(a>0\) and \(a\ne 1\) then:

\begin{align*} {a}^{x}& ={a}^{y} \\ \text{then } x& = y \text{ (same base)} \end{align*}

Also notice that if \(a = 1\), then \(x\) and \(y\) can be different.

Worked example 8: Equating exponents

Solve for \(x\): \({3}^{x + 1}=9\).

Change the bases to prime numbers

\[{3}^{x + 1} = {3}^{2}\]

The bases are the same so we can equate exponents

\begin{align*} x+1& = 2 \\ \therefore x & = 1 \end{align*}
temp text

Worked example 9: Equating exponents

Solve for \(t\): \({3}^{t}=1\).

Solve for \(t\)

We know from the exponent identities that \(a^{0}=1\), therefore:

\begin{align*} {3}^{t}& = 1 \\ 3^{t} & = 3^{0} \\ \therefore t &= 0 \end{align*}
temp text

Worked example 10: Solving equations by taking out a common factor

Solve for \(t\): \({5}^{t} + 3\cdot {5}^{t + 1} = 400\).

Rewrite the expression

\[{5}^{t} + 3\left({5}^{t} \cdot 5\right) = 400\]

Take out a common factor

\begin{align*} {5}^{t}\left(1+3\cdot5\right)&=400 \\ {5}^{t}\left(1 + 15\right) &= 400 \end{align*}

Simplify

\begin{align*} {5}^{t}\left(16\right) & = 400 \\ {5}^{t} & =25 \end{align*}

Change the bases to prime numbers

\[{5}^{t} = {5}^{2}\]

The bases are the same so we can equate exponents

\[\therefore t=2\]
temp text

Worked example 11: Solving equations by factorising a trinomial

Solve for \(x\): \[3^{2x}-80\cdot 3^{x} - 81 = 0\]

Factorise the trinomial

\[(3^{x}-81)(3^{x}+1)=0\]

Solve for \(x\)

\(3^x = 81\) or \(3^x = -1\). However \(3^x = -1\) is undefined, so:

\begin{align*} 3^{x}& = 81 \\ {3}^{x} & = 3^{4} \\ x & = 4 \end{align*}

Therefore \(x = 4\)

Worked example 12: Solving equations by factorising a trinomial

Solve for \(p\): \[p-13{p}^{\frac{1}{2}} + 36 = 0\]

Rewrite the equation

We notice that \({\left({p}^{\frac{1}{2}}\right)}^{2} = p\) so we can rewrite the equation as:

\[{\left({p}^{\frac{1}{2}}\right)}^{2} - 13{p}^{\frac{1}{2}} + 36 = 0\]

Factorise as a trinomial

\[\left({p}^{\frac{1}{2}} - 9\right)\left({p}^{\frac{1}{2}} - 4\right) = 0\]

Solve to find both roots

\(\begin{array}{rlcrl} {p}^{\frac{1}{2}} - 9& = 0 & \text{ or } & {p}^{\frac{1}{2}} - 4 & =0 \\ {p}^{\frac{1}{2}} & =9 & & {p}^{\frac{1}{2}} & =4 \\ {\left({p}^{\frac{1}{2}}\right)}^{2} & = {\left(9\right)}^{2} & & {\left({p}^{\frac{1}{2}}\right)}^{2} & = {\left(4\right)}^{2} \\ p & =81 & & p & =16 \end{array}\)

Therefore \(p = 81\) or \(p = 16\).

Learners may find Worked Example 13 much easier using the \(k\)-substitution method. You may choose to return to this example once the \(k\)-substitution has been taught.

The solution using \(k\)-substitution is as follows:

\begin{align*} 2^{x}-2^{4-x} &=0 \\ 2^{x}-2^{4} \cdot 2^{-x} & = 0\\ 2^{x}-\dfrac{2^{4}}{2^{x}} & = 0 \\ \text{Let } 2^{x}&=k\\ k-\dfrac{2^{4}}{k} &=0\\ \times k \qquad &k^{2}-16 = 0 \\ (k-4)(k+4)=0\\ k = -4 & \text{ or } \qquad k = 4 \\ 2^{x} \ne -4 & \qquad 2^{x}=4 \\ & \qquad 2^{x}=2^{2}=4 \\ x& = 2 \end{align*}

Worked example 13: Solving equations by factorisation

Solve for \(x\): \[2^{x}-2^{4-x} = 0\]

Rewrite the equation

In order to get the equation into a form which we can factorise, we need to rewrite the equation:

\begin{align*} 2^{x}-2^{4-x} &= 0 \\ 2^{x}-2^{4} \cdot 2^{-x} &= 0 \\ 2^{x}-\frac{2^{4}}{2^{x}} &= 0 \end{align*}

Now eliminate the fraction by multiplying both sides of the equation by the denominator, \(2^{x}\).

\begin{align*} \left(2^{x}-\frac{2^{4}}{2^{x}}\right) \times 2^{x}&= 0 \times 2^{x} \\ 2^{2x}-16 &= 0 \end{align*}

Factorise the equation

Now that we have rearranged the equation, we can see that we are left with a difference of two squares. Therefore:

\begin{align*} 2^{2x}-16 &= 0 \\ (2^x - 4)(2^x+4) &=0 \\ 2^x & = 4 \qquad 2^x \ne -4 \quad \text{(a positive integer with an exponent is always positive)}\\ 2^{x}=2^{2} & =4 \\ x& = 2 \end{align*}

Therefore \(x = 2\).

Textbook Exercise 2.3

Solve for the variable:

\(2^{x + 5} = 32\)

\begin{align*} 2^{x + 5} & = 32 \\ 2^{x + 5} & = 2^{5} \\ \therefore x + 5 & = 5 \\ x & = 0 \end{align*}

\(5^{2x + 2} = \dfrac{1}{125}\)

\begin{align*} 5^{2x + 2} & = \dfrac{1}{125} \\ 5^{2x + 2} & = \dfrac{1}{5^{3}} \\ 5^{2x + 2} & = 5^{-3}\\ \therefore 2x + 2 & = -3 \\ 2x & = -5\\ x & = -\dfrac{5}{2} \end{align*}

\(64^{y + 1} = 16^{2y + 5}\)

\begin{align*} 64^{y + 1} & = 16^{2y + 5} \\ 2^{6(y + 1)} & = 2^{4(2y + 5)} \\ 2^{6y + 6} & = 2^{8y + 20}\\ \therefore 6y + 6 & = 8y + 20 \\ 2y & = -14\\ y & = -7 \end{align*}

\(3^{9x - 2} = 27\)

\begin{align*} 3^{9x - 2} & = 27 \\ 3^{9x - 2} & = 3^{3} \\ \therefore 9x - 2 & = 3 \\ 9x & = 5\\ x & = \dfrac{5}{9} \end{align*}

\(\text{25} = \text{5}^ {z -4}\)

\begin{align*} \text{25} & = \text{5}^ {z -4} \\ \text{5}^\text{2} & = \text{5}^ {z -4} \\ \text{2} & = z -4 \\ \text{2} +4 & = z \\ \text{6} & = z \end{align*}

\(- \frac{1}{2} \cdot 6^{\frac{m}{2} + 3} = -18\)

\begin{align*} \left( -2 \right) \left( - \frac{1}{2} 6^{\frac{m}{2} + 3} \right) & = \left( -18 \right) \left( -2 \right) \\ 6^{\frac{m}{2} + 3} & = 36 \\ 6^{\frac{m}{2} + 3} & = 6^{2} \\ \frac{m}{2} + 3 & = 2 \\ \frac{m}{2} & = -1 \\ m & = -2 \end{align*}

\(81^{k + 2} = 27^{k + 4}\)

\begin{align*} 81^{k + 2} & = 27^{k + 4} \\ 3^{4(k + 2)} & = 3^{3(k + 4)} \\ \therefore 4k + 8 & = 3k + 12 \\ k & = 4 \end{align*}

\(25^{1 - 2x} - 5^{4} = 0\)

\begin{align*} 25^{1 - 2x} - 5^{4} & = 0 \\ 5^{2(1 - 2x)} & = 5^{4} \\ 5^{2 - 4x} & = 5^{4} \\ \therefore 2 - 4x & = 4 \\ 4x & = -2\\ x & = -\dfrac{1}{2} \end{align*}

\(27^{x} \times 9^{x - 2} = 1\)

\begin{align*} 27^{x} \times 9^{x - 2} & = 1 \\ 3^{3x} \times 3^{2(x - 2)} & = 1 \\ 3^{3x + 2x - 4} & = 3^{0} \\ \therefore 5x - 4 & = 0 \\ 5x & = 4\\ x & = \frac{4}{5} \end{align*}

\(2^{t} + 2^{t + 2} = 40\)

\begin{align*} 2^{t} + 2^{t + 2} & = 40 \\ 2^{t}(1 + 2^{2}) & = 40\\ 2^{t}(5) & = 40 \\ 2^{t} & = 8 \\ 2^{t} & = 2^{3}\\ \therefore t & = 3 \end{align*}
\((7^x - 49)(3^x - 27) = 0\)
\begin{align*} (7^x - 49)(3^x - 27) &= 0 \\ (7^x - 7^2)(3^x - 3^3) &= 0 \\ \therefore 7^x - 7^2 = 0 &\text{ or } 3^x - 3^3 = 0 \\ \therefore 7^x = 7^2 &\text{ or } 3^x = 3^3 \\ \therefore x = 2 &\text{ or } x = 3 \end{align*}
\((2 \cdot 2^x - 16)(3^{x+1} - 9) = 0\)
\begin{align*} (2 \cdot 2^x - 16)(3^{x+1} - 9) &= 0 \\ (2^{x+1} - 2^4)(3^{x+1} - 3^2) &= 0 \\ \therefore 2^{x + 1} - 2^4 = 0 &\text{ or } 3^{x+1} - 3^2 = 0 \\ x + 1 = 4 &\text{ or } x + 1 = 2 \\ \therefore x = 3 &\text{ or } x = 1 \end{align*}
\((10^x - 1)(3^x - 81) = 0\)
\begin{align*} (10^x - 1)(3^x - 81) &= 0 \\ (10^x - 10^0)(3^x - 3^4)& = 0 \\ \therefore 10^x - 10^0 = 0 &\text{ or } 3^x - 3^4 = 0 \\ \therefore x = 0 &\text{ or } x = 4 \end{align*}

\(2 \times 5^{2 - x} = 5 + 5^{x}\)

\begin{align*} 2 \times 5^{2 - x} & = 5 + 5^{x} \\ 2(5^{2})(5^{-x}) & = 5 + 5^{x}\\ \dfrac{2(5^{2})}{5^{x}} - 5 - 5^{x} & = 0 \\ \left(\dfrac{50}{5^{x}}\right) \times 5^{x} -5 \times 5^{x} - 5^{x} \times 5^{x} & = 0 \\ 50 - 5(5^{x}) - \left(5^{x}\right)^{2} & = 0 \\ \left(5^{x} - 5\right)\left(5^{x} + 10\right) & = 0 \\ 5^{x} - 5 = 0 \text{ or } & 5^{x} + 10 = 0\\ 5^{x} = 5 \text{ or } & 5^{x} = -10\\ x = 1 \text{ or } & \text{ undefined}\\ \therefore x & = 1 \end{align*}

\(9^{m} + 3^{3 - 2m} = 28\)

\begin{align*} 9^{m} + 3^{3 - 2m} & = 28 \\ 3^{2m} + 3^{3}.3^{-2m} & = 28 \\ 3^{2m} + \frac{27}{3^{2m}} - 28 & = 0 \\ \left(3^{2m}\right)^{2} - 28\left(3^{2m}\right) + 27 & = 0 \\ \left(3^{2m} - 27\right)\left(3^{2m} - 1\right) & = 0 \\ 3^{2m} - 27 = 0 \text{ or } & 3^{2m} - 1 = 0\\ 3^{2m} = 3^{3} \text{ or } & 3^{2m} = 3^{0}\\ 2m = 3 \text{ or } & 2m = 0\\ \therefore m & = \dfrac{3}{2} \text{ or } 0 \end{align*}

\(y - 2y^{\frac{1}{2}} + 1 = 0\)

\begin{align*} y - 2y^{\frac{1}{2}} + 1 & = 0 \\ \left(y^{\frac{1}{2}} - 1\right)\left(y^{\frac{1}{2}} - 1\right) & = 0 \\ y^{\frac{1}{2}} - 1 & = 0\\ y^{\frac{1}{2}} & = 1\\ y^{\frac{1}{2} \times 2} & = 1^{1 \times 2}\\ y & = 1^{2} \\ \therefore y & = 1 \end{align*}

\(4^{x + 3} = \text{0,5}\)

\begin{align*} 4^{x + 3} & = \text{0,5} \\ 2^{2x + 6} & = \dfrac{1}{2} \\ 2^{2x + 6} & = 2^{-1}\\ \therefore 2x + 6 & = -1 \\ 2x & = -7\\ x & = -\dfrac{7}{2} \end{align*}

\(2^{a} = \text{0,125}\)

\begin{align*} 2^{a} & = \text{0,125} \\ 2^{a} & = \dfrac{1}{8} \\ 2^{a} & = 2^{-3}\\ \therefore a & = -3 \end{align*}

\(10^{x} = \text{0,001}\)

\begin{align*} 10^{x} & = \text{0,001} \\ 10^{x} & = \dfrac{1}{\text{1 000}} \\ 10^{x} & = 10^{-3}\\ \therefore x & = -3 \end{align*}

\(2^{x^{2} - 2x - 3} = 1\)

\begin{align*} 2^{x^{2} - 2x - 3} & = 1 \\ 2^{x^{2} - 2x - 3} & = 2^{0} \\ \therefore x^{2} - 2x - 3 & = 0 \\ (x - 3)(x + 1) & = 0\\ \therefore x & = 3 \text{ or } -1 \end{align*}
\(\dfrac{8^x - 1}{2^x - 1} = 8.2^x + 9\)
\begin{align*} \frac{8^x - 1}{2^x - 1} &= 8.2^x + 9 \\ \frac{2^{3x} - 1}{2^x - 1} &= 8.2^x + 9 \\ \frac{(2^{x} - 1)(2^{2x} + 2^x + 1)}{2^x - 1} &= 8.2^x + 9 \\ 2^{2x} + 2^x + 1 &= 8.2^x + 9 \\ 2^{2x} + 2^x &= 8.2^x + 8 \\ 2^x.2^x + 2^x &= 8(2^x + 1) \\ 2^x(2^x + 1) &= 8(2^x + 1) \\ 2^x &= 2^3 \\ \therefore x &= 3 \end{align*}
\(\dfrac{27^x - 1}{9^x + 3^x + 1} = -\dfrac{8}{9}\)
\begin{align*} \frac{27^x - 1}{9^x + 3^x + 1} &= -\frac{8}{9} \\ \frac{3^{3x} - 1}{9^x + 3^x + 1} &= -\frac{8}{9} \\ \frac{(3^x - 1)(9^x + 3^x + 1)}{9^x + 3^x + 1} &= -\frac{8}{9} \\ 3^x - 1 &= -\frac{8}{9} \\ 3^x &= \frac{1}{9} \\ 3^x &= \frac{1}{3^2} \\ 3^x &= 3^{-2} \\ \therefore x &= -2 \end{align*}

The growth of algae can be modelled by the function \(f(t) = 2^{t}\). Find the value of \(t\) such that \(f(t) = 128\).

\begin{align*} f(t) = 2^{t} & = 128 \\ 2^{t} & = 2^{7} \\ \therefore t & = 7 \end{align*}

Use trial and error to find the value of \(x\) correct to 2 decimal places

\(2^x = 7\)
\begin{align*} 2^2 = 4 &\text{ and } 2^3= 8 \\ \text{so } 2 < &x < 3 \text{ but closer to }3 \\ \text{Test} \\ 2^{\text{2,9}} &= \text{7,464} \\ 2^{\text{2,8}} &= \text{6,964} \\ 2^{\text{2,81}} &= \text{7,01} \\ 2^{\text{2,805}} &= \text{6,989} \\ 2^{\text{2,809}} &= \text{7,007} \\ \therefore x &\approx \text{2,81} \end{align*}

Use trial and error to find the value of \(x\) correct to 2 decimal places

\(5^x = 11\)
\begin{align*} 5^1 = 5 &\text{ and } 5^2 = 25 \\ \text{so } 1 < &x < 2 \\ \text{Test} \\ 5^{\text{1,5}} &= \text{11,180} \\ 5^{\text{1,4}} &= \text{9,51} \\ 5^{\text{1,45}} &= \text{10,31} \\ 5^{\text{1,49}} &= \text{11,001} \\ \therefore x &\approx \text{1,49} \end{align*}