\(2^{x + 5} = 32\)
2.4 Exponential equations
Previous
2.3 Rational exponents
|
Next
Chapter summary
|
2.4 Exponential equations (EMAW)
Exponential equations have the unknown variable in the exponent. Here are some examples:
\begin{align*} {3}^{x + 1} & = 9 \\ {5}^{t} + 3 \times {5}^{t - 1}& = 400 \end{align*}If we can write a single term with the same base on each side of the equation, we can equate the exponents. This is one method to solve exponential equations.
Important: if \(a>0\) and \(a\ne 1\) then:
\begin{align*} {a}^{x}& ={a}^{y} \\ \text{then } x& = y \text{ (same base)} \end{align*}Also notice that if \(a = 1\), then \(x\) and \(y\) can be different.
Worked example 8: Equating exponents
Solve for \(x\): \({3}^{x + 1}=9\).
Change the bases to prime numbers
\[{3}^{x + 1} = {3}^{2}\]The bases are the same so we can equate exponents
\begin{align*} x+1& = 2 \\ \therefore x & = 1 \end{align*}Worked example 9: Equating exponents
Solve for \(t\): \({3}^{t}=1\).
Solve for \(t\)
We know from the exponent identities that \(a^{0}=1\), therefore:
\begin{align*} {3}^{t}& = 1 \\ 3^{t} & = 3^{0} \\ \therefore t &= 0 \end{align*}Worked example 10: Solving equations by taking out a common factor
Solve for \(t\): \({5}^{t} + 3\cdot {5}^{t + 1} = 400\).
Rewrite the expression
\[{5}^{t} + 3\left({5}^{t} \cdot 5\right) = 400\]Take out a common factor
\begin{align*} {5}^{t}\left(1+3\cdot5\right)&=400 \\ {5}^{t}\left(1 + 15\right) &= 400 \end{align*}Simplify
\begin{align*} {5}^{t}\left(16\right) & = 400 \\ {5}^{t} & =25 \end{align*}Change the bases to prime numbers
\[{5}^{t} = {5}^{2}\]The bases are the same so we can equate exponents
\[\therefore t=2\]Worked example 11: Solving equations by factorising a trinomial
Solve for \(x\): \[3^{2x}-80\cdot 3^{x} - 81 = 0\]
Factorise the trinomial
\[(3^{x}-81)(3^{x}+1)=0\]Solve for \(x\)
\(3^x = 81\) or \(3^x = -1\). However \(3^x = -1\) is undefined, so:
\begin{align*} 3^{x}& = 81 \\ {3}^{x} & = 3^{4} \\ x & = 4 \end{align*}Therefore \(x = 4\)
Worked example 12: Solving equations by factorising a trinomial
Solve for \(p\): \[p-13{p}^{\frac{1}{2}} + 36 = 0\]
Rewrite the equation
We notice that \({\left({p}^{\frac{1}{2}}\right)}^{2} = p\) so we can rewrite the equation as:
\[{\left({p}^{\frac{1}{2}}\right)}^{2} - 13{p}^{\frac{1}{2}} + 36 = 0\]Factorise as a trinomial
\[\left({p}^{\frac{1}{2}} - 9\right)\left({p}^{\frac{1}{2}} - 4\right) = 0\]Solve to find both roots
\(\begin{array}{rlcrl} {p}^{\frac{1}{2}} - 9& = 0 & \text{ or } & {p}^{\frac{1}{2}} - 4 & =0 \\ {p}^{\frac{1}{2}} & =9 & & {p}^{\frac{1}{2}} & =4 \\ {\left({p}^{\frac{1}{2}}\right)}^{2} & = {\left(9\right)}^{2} & & {\left({p}^{\frac{1}{2}}\right)}^{2} & = {\left(4\right)}^{2} \\ p & =81 & & p & =16 \end{array}\)Therefore \(p = 81\) or \(p = 16\).
Learners may find Worked Example 13 much easier using the \(k\)-substitution method. You may choose to return to this example once the \(k\)-substitution has been taught.
The solution using \(k\)-substitution is as follows:
\begin{align*} 2^{x}-2^{4-x} &=0 \\ 2^{x}-2^{4} \cdot 2^{-x} & = 0\\ 2^{x}-\dfrac{2^{4}}{2^{x}} & = 0 \\ \text{Let } 2^{x}&=k\\ k-\dfrac{2^{4}}{k} &=0\\ \times k \qquad &k^{2}-16 = 0 \\ (k-4)(k+4)=0\\ k = -4 & \text{ or } \qquad k = 4 \\ 2^{x} \ne -4 & \qquad 2^{x}=4 \\ & \qquad 2^{x}=2^{2}=4 \\ x& = 2 \end{align*}Worked example 13: Solving equations by factorisation
Solve for \(x\): \[2^{x}-2^{4-x} = 0\]
Rewrite the equation
In order to get the equation into a form which we can factorise, we need to rewrite the equation:
\begin{align*} 2^{x}-2^{4-x} &= 0 \\ 2^{x}-2^{4} \cdot 2^{-x} &= 0 \\ 2^{x}-\frac{2^{4}}{2^{x}} &= 0 \end{align*}Now eliminate the fraction by multiplying both sides of the equation by the denominator, \(2^{x}\).
\begin{align*} \left(2^{x}-\frac{2^{4}}{2^{x}}\right) \times 2^{x}&= 0 \times 2^{x} \\ 2^{2x}-16 &= 0 \end{align*}Factorise the equation
Now that we have rearranged the equation, we can see that we are left with a difference of two squares. Therefore:
\begin{align*} 2^{2x}-16 &= 0 \\ (2^x - 4)(2^x+4) &=0 \\ 2^x & = 4 \qquad 2^x \ne -4 \quad \text{(a positive integer with an exponent is always positive)}\\ 2^{x}=2^{2} & =4 \\ x& = 2 \end{align*}Therefore \(x = 2\).
Solve for the variable:
\(5^{2x + 2} = \dfrac{1}{125}\)
\(64^{y + 1} = 16^{2y + 5}\)
\(3^{9x - 2} = 27\)
\(\text{25} = \text{5}^ {z -4}\)
\begin{align*} \text{25} & = \text{5}^ {z -4} \\ \text{5}^\text{2} & = \text{5}^ {z -4} \\ \text{2} & = z -4 \\ \text{2} +4 & = z \\ \text{6} & = z \end{align*}
\(- \frac{1}{2} \cdot 6^{\frac{m}{2} + 3} = -18\)
\begin{align*} \left( -2 \right) \left( - \frac{1}{2} 6^{\frac{m}{2} + 3} \right) & = \left( -18 \right) \left( -2 \right) \\ 6^{\frac{m}{2} + 3} & = 36 \\ 6^{\frac{m}{2} + 3} & = 6^{2} \\ \frac{m}{2} + 3 & = 2 \\ \frac{m}{2} & = -1 \\ m & = -2 \end{align*}
\(81^{k + 2} = 27^{k + 4}\)
\(25^{1 - 2x} - 5^{4} = 0\)
\(27^{x} \times 9^{x - 2} = 1\)
\(2^{t} + 2^{t + 2} = 40\)
\(2 \times 5^{2 - x} = 5 + 5^{x}\)
\(9^{m} + 3^{3 - 2m} = 28\)
\(y - 2y^{\frac{1}{2}} + 1 = 0\)
\(4^{x + 3} = \text{0,5}\)
\(2^{a} = \text{0,125}\)
\(10^{x} = \text{0,001}\)
\(2^{x^{2} - 2x - 3} = 1\)
The growth of algae can be modelled by the function \(f(t) = 2^{t}\). Find the value of \(t\) such that \(f(t) = 128\).
Use trial and error to find the value of \(x\) correct to 2 decimal places
\(2^x = 7\)Use trial and error to find the value of \(x\) correct to 2 decimal places
\(5^x = 11\)
Previous
2.3 Rational exponents
|
Table of Contents |
Next
Chapter summary
|