\(t^{\frac{1}{4}} \times 3t^{\frac{7}{4}}\)
2.3 Rational exponents
Previous
2.2 Revision of exponent laws
|
Next
2.4 Exponential equations
|
2.3 Rational exponents (EMAV)
We can also apply the exponent laws to expressions with rational exponents.
According to CAPS, the rational exponent law is introduced in Grade 11 but you may choose to introduce learners to the rational exponent law \(a^{\frac{m}{n}}=\sqrt[n]{a^{m}}\) at this stage.
Worked example 6: Simplifying rational exponents
Simplify:
\[2{x}^{\frac{1}{2}}\times 4{x}^{-\frac{1}{2}}\]Worked example 7: Simplifying rational exponents
Simplify:
\[{\left(\text{0,008}\right)}^{\frac{1}{3}}\]Write as a fraction and simplify
\begin{align*} {\left(\text{0,008}\right)}^{\frac{1}{3}} & = {\left(\frac{8}{\text{1 000}}\right)}^{\frac{1}{3}} \\ & = {\left(\frac{1}{125}\right)}^{\frac{1}{3}} \\ & = {\left(\frac{1}{5^{3}}\right)}^{\frac{1}{3}} \\ & = \frac{{1}^{\frac{1}{3}}}{5^{\left(3 \cdot \frac{1}{3}\right)}} \\ & = \frac{1}{5} \end{align*}Extension: the following video provides a summary of all the exponent rules and rational exponents.
Simplify without using a calculator:
\(\dfrac{16x^{2}}{\left(4x^{2}\right)^{\frac{1}{2}}}\)
\(\left(\text{0,25}\right)^{\frac{1}{2}}\)
\(\left(27\right)^{-\frac{1}{3}}\)
\(\left(3p^{2}\right)^{\frac{1}{2}} \times \left(3p^{4}\right)^{\frac{1}{2}}\)
\(\text{12} {\left( a^\text{4}b^\text{8} \right)}^ {\frac{\text{1}}{\text{2}}} \times {\left( \text{512}a^\text{3}b^\text{3} \right)}^ {\frac{\text{1}}{\text{3}}}\)
\begin{align*} \text{12} {\left( a^\text{4}b^\text{8} \right)}^ {\frac{\text{1}}{\text{2}}} \times {\left( \text{512}a^\text{3}b^\text{3} \right)}^ {\frac{\text{1}}{\text{3}}} &= \text{12} a^{\frac{\text{4}}{\text{2}}}b^ {\frac{\text{8}}{\text{2}}} \times (\text{512})^{\frac{\text{1}}{\text{3}}}a^{\frac{\text{3}}{\text{3}}}b^{\frac{\text{3}}{\text{3}}} \\ &= \text{12} a^{\text{2}}b^{\text{4}} \times \left( \text{8}^{\text{3}} \right) ^{\frac{\text{1}}{\text{3}}}a^{\text{1}}b^{\text{1}} \\ &= \text{12} a^{\text{2}}b^{\text{4}} \times \text{8}a^{\text{1}}b^{\text{1}} \\ &= \text{96} a^{\text{3}} b^{\text{5}} \end{align*}
Previous
2.2 Revision of exponent laws
|
Table of Contents |
Next
2.4 Exponential equations
|