Chapter summary
Previous
2.4 Exponential equations
|
Next
End of chapter exercises
|
Chapter summary
-
Exponential notation means writing a number as \({a}^{n}\) where \(n\) is any natural number and \(a\) is any real number.
-
\(a\) is the base and \(n\) is the exponent or index.
-
Definition:
-
\({a}^{n}=a\times a\times \cdots \times a \enspace \left(n \text{ times}\right)\)
-
\({a}^{0}=1\), if \(a\ne 0\)
-
\({a}^{-n}=\dfrac{1}{{a}^{n}}\), if \(a\ne 0\)
-
\(\dfrac{1}{a^{-n}} = a^{n}\), if \(a\ne 0\)
-
-
The laws of exponents:
-
\(a^{m} \times a^{n} = a^{m + n}\)
-
\(\dfrac{{a}^{m}}{{a}^{n}}={a}^{m-n}\)
-
\({\left(ab\right)}^{n}={a}^{n}{b}^{n}\)
-
\({\left(\dfrac{a}{b}\right)}^{n}=\dfrac{{a}^{n}}{{b}^{n}}\)
-
\({\left({a}^{m}\right)}^{n}={a}^{mn}\)
-
- When simplifying expressions with exponents, we can reduce the bases to prime bases or factorise.
- When solving equations with exponents, we can apply the rule that if \(a^{x}=a^{y}\) then \(x=y\); or we can factorise the expressions.
Previous
2.4 Exponential equations
|
Table of Contents |
Next
End of chapter exercises
|