Home Practice
For learners and parents For teachers and schools
Textbooks
Full catalogue
Leaderboards
Learners Leaderboard Classes/Grades Leaderboard Schools Leaderboard
Pricing Support
Help centre Contact us
Log in

We think you are located in United States. Is this correct?

4.6 Summary

4.6 Summary (EMCGP)

Pythagorean Identities

Ratio Identities

\({\cos}^{2}\theta +{\sin}^{2}\theta =1\)

\(\tan\theta =\frac{\sin\theta }{\cos\theta }\)

\({\cos}^{2}\theta = 1 - {\sin}^{2}\theta\)

\(\frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta}\)

\({\sin}^{2}\theta = 1 - {\cos}^{2}\theta\)

Special angle triangles

4d3e042a38f6b45a487871f8b3e98d4c.png4ff6073e65b92eef216921d212d131f8.png

θ

\(\text{0}\)°

\(\text{30}\)°

\(\text{45}\)°

\(\text{60}\)°

\(\text{90}\)°

\(\cos θ\)

\(\text{1}\)

\(\frac{\sqrt{3}}{2}\)

\(\frac{1}{\sqrt{2}}\)

\(\frac{1}{2}\)

\(\text{0}\)

\(\sin θ\)

\(\text{0}\)

\(\frac{1}{2}\)

\(\frac{1}{\sqrt{2}}\)

\(\frac{\sqrt{3}}{2}\)

\(\text{1}\)

\(\tan θ\)

\(\text{0}\)

\(\frac{1}{\sqrt{3}}\)

\(\text{1}\)

\(\sqrt{3}\)

undef

CAST diagram and reduction formulae

2b56c3f89f685c430c6cc22358093016.png

Negative angles

Periodicity Identities

Cofunction Identities

\(\sin\left(-\theta \right)=-\sin\theta\)

\(\sin\left(\theta ±{360}°\right)=\sin\theta\)

\(\sin\left({90}°-\theta \right)=\cos\theta\)

\(\cos\left(-\theta \right)=\cos\theta\)

\(\cos\left(\theta ±{360}°\right)=\cos\theta\)

\(\cos\left({90}°-\theta \right)=\sin\theta\)

\(\tan\left(-\theta \right)=-\tan\theta\)

\(\tan\left(\theta ±{180}°\right)=\tan\theta\)

\(\sin\left({90}°+\theta \right)=\cos\theta\)

\(\cos\left({90}°+\theta \right)=- \sin\theta\)

bfb7596890eaba3fbefbb9bf7d2e0dfc.png

Area Rule

Sine Rule

Cosine Rule

\(\text{Area}=\frac{1}{2}bc\sin \hat{A}\)

\(\frac{\sin \hat{A}}{a}=\frac{\sin \hat{B}}{b}=\frac{\sin \hat{C}}{c}\)

\({a}^{2}={b}^{2}+{c}^{2}-2bc\cos \hat{A}\)

\(\text{Area}=\frac{1}{2}ab\sin \hat{C}\)

\(a \sin \hat{B} = b \sin \hat{A}\)

\({b}^{2}={a}^{2}+{c}^{2}-2ac\cos \hat{B}\)

\(\text{Area}=\frac{1}{2}ac\sin \hat{B}\)

\(b \sin{C} = c \sin \hat{B}\)

\({c}^{2}={a}^{2}+{b}^{2}-2ab\cos \hat{C}\)

\(a \sin{C} = c \sin \hat{A}\)

Compound Angle Identities

Double Angle Identities

\(\sin\left(\theta +\beta\right)=\sin\theta\cos \beta +\cos\theta\sin \beta\)

\(\sin\left(2\theta \right)=2\sin\theta\cos \theta\)

\(\sin\left(\theta -\beta \right)=\sin\theta\cos \beta -\cos\theta\sin \beta\)

\(\cos\left(2\theta \right)={\cos}^{2}\theta -{\sin}^{2}\theta\)

\(\cos\left(\theta +\beta \right)=\cos\theta\cos \beta -\sin\theta\sin \beta\)

\(\cos\left(2\theta \right)=1-2{\sin}^{2}\theta\)

\(\cos\left(\theta -\beta \right)=\cos\theta\cos \beta +\sin\theta\sin \beta\)

\(\cos\left(2\theta \right)=2{\cos}^{2}\theta - 1\)

\(\)

\(\tan\left(2\theta \right)=\frac{ \sin 2 \theta }{ \cos 2 \theta }\)

temp text