\(\sqrt{49}\)
\(\sqrt{49} = 7\)
Previous
1.1 Revision
|
Next
1.3 Solving surd equations
|
The laws of exponents can also be extended to include the rational numbers. A rational number is any number that can be written as a fraction with an integer in the numerator and in the denominator. We also have the following definitions for working with rational exponents.
For \(\sqrt{25} = 5\), we say that \(\text{5}\) is the square root of \(\text{25}\) and for \(\sqrt[3]{8} = 2\), we say that \(\text{2}\) is the cube root of \(\text{8}\). For \(\sqrt[5]{32} = 2\), we say that \(\text{2}\) is the fifth root of \(\text{32}\).
When dealing with exponents, a root refers to a number that is repeatedly multiplied by itself a certain number of times to get another number. A radical refers to a number written as shown below.
The radical symbol and degree show which root is being determined. The radicand is the number under the radical symbol.
If \(n\) is an even natural number, then the radicand must be positive, otherwise the roots are not real. For example, \(\sqrt[4]{16} = 2\) since \(2 \times 2 \times 2 \times 2 = 16\), but the roots of \(\sqrt[4]{-16}\) are not real since \((-2) \times (-2) \times (-2) \times (-2) \ne -16\).
If \(n\) is an odd natural number, then the radicand can be positive or negative. For example, \(\sqrt[3]{27} = 3\) since \(3 \times 3 \times 3 = 27\) and we can also determine \(\sqrt[3]{-27} = -3\) since \((-3) \times (-3) \times (-3) = -27\).
A surd is a radical which results in an irrational number. Irrational numbers are numbers that cannot be written as a fraction with the numerator and the denominator as integers. For example, \(\sqrt{12}\), \(\sqrt[3]{\text{100}}\), \(\sqrt[5]{25}\) are surds.
Write each of the following as a radical and simplify where possible:
Simplify without using a calculator:
\[\left(\frac{5}{4^{-1}-9^{-1}}\right)^{\frac{1}{2}}\]\[\left( \dfrac{5}{\frac{1}{4} - \frac{1}{9}} \right)^{\frac{1}{2}}\]
\begin{align*} &= \left( \dfrac{5}{\frac{9-4}{36}} \right)^{\frac{1}{2}} \\ &= \left( \dfrac{5}{\frac{5}{36}} \right)^{\frac{1}{2}} \\ &= \left( 5 \div \frac{5}{36} \right)^{\frac{1}{2}} \\ &= \left( 5 \times \frac{36}{5} \right)^{\frac{1}{2}} \\ &= (36)^{\frac{1}{2}} \end{align*}
\begin{align*} &= \sqrt{36}\\ &= 6 \end{align*}
Simplify the following and write answers with positive exponents:
\(\sqrt{49}\)
\(\sqrt{49} = 7\)
\(\sqrt{36^{-1}}\)
\(\sqrt[3]{6^{-2}}\)
\(\sqrt[3]{-\dfrac{64}{27}}\)
\(\sqrt[4]{(16x^4)^3}\)
Simplify:
\({s}^{\frac{1}{2}}÷{s}^{\frac{1}{3}}\)
\({\left(64{m}^{6}\right)}^{\frac{2}{3}}\)
\(\left(5x\right)^0 + 5x^0 - \left(\text{0,25}\right)^{-\text{0,5}} + 8^{\frac{2}{3}}\)
Use the laws to re-write the following expression as a power of \(x\):
\(x\sqrt{x\sqrt{x\sqrt{x\sqrt{x}}}}\)We have seen in previous examples and exercises that rational exponents are closely related to surds. It is often useful to write a surd in exponential notation as it allows us to use the exponential laws.
The additional laws listed below make simplifying surds easier:
Show that:
Examples:
\(\sqrt{2} \times \sqrt{32} = \sqrt{2 \times 32} = \sqrt{64} = 8\)
\(\dfrac{\sqrt[3]{24}}{\sqrt[3]{3}} = \sqrt[3]{\dfrac{24}{3}} = \sqrt[3]{8} = 2\)
\(\sqrt{\sqrt{81}} = \sqrt[4]{81} = \sqrt[4]{3^4} = 3\)
Two surds \(\sqrt[m]{a}\) and \(\sqrt[n]{b}\) are like surds if \(m=n\), otherwise they are called unlike surds. For example, \(\sqrt{\frac{1}{3}}\) and \(-\sqrt{61}\) are like surds because \(m = n = 2\). Examples of unlike surds are \(\sqrt[3]{5} \text{ and } \sqrt[5]{7y^3}\) since \(m \ne n\).
We can sometimes simplify surds by writing the radicand as a product of factors that can be further simplified using \(\sqrt[n]{ab} = \sqrt[n]{a} \times \sqrt[n]{b}\).
Write the following in simplest surd form: \(\sqrt{50}\)
\begin{align*} \sqrt{50} &= \sqrt{5 \times 5 \times 2} \\ &= \sqrt{5^2 \times 2} \end{align*}
\begin{align*} &= \sqrt{5^2} \times \sqrt{2} \\ &= 5 \times \sqrt{2} \\ &= 5\sqrt{2} \end{align*}
Sometimes a surd cannot be simplified. For example, \(\sqrt{6}, \sqrt[3]{30} \text{ and } \sqrt[4]{42}\) are already in their simplest form.
Write the following in simplest surd form: \(\sqrt[3]{54}\)
\begin{align*} \sqrt[3]{54} &= \sqrt[3]{3 \times 3 \times 3 \times 2} \\ &= \sqrt[3]{3^3 \times 2} \end{align*}
\begin{align*} &= \sqrt[3]{3^3} \times \sqrt[3]{2} \\ &= 3 \times \sqrt[3]{2} \\ &= 3\sqrt[3]{2} \end{align*}
Simplify: \(\sqrt{\text{147}}+\sqrt{\text{108}}\)
\begin{align*} \sqrt{\text{147}} + \sqrt{\text{108}} &= \sqrt{49 \times 3} + \sqrt{36 \times 3} \\ &= \sqrt{7^2 \times 3} + \sqrt{6^2 \times 3} \end{align*}
\begin{align*} &= \left( \sqrt{7^2} \times \sqrt{3} \right) + \left( \sqrt{6^2} \times \sqrt{3} \right)\\ &= \left( 7 \times \sqrt{3} \right) + \left( 6 \times \sqrt{3} \right) \\ &= 7\sqrt{3} + 6\sqrt{3} \end{align*}
\[13 \sqrt{3}\]
Simplify: \(\left( \sqrt{20} - \sqrt{5} \right)^2\)
\[\left( \sqrt{20} - \sqrt{5} \right)^2 = \left( \sqrt{4 \times 5} - \sqrt{5} \right)^2\]
\begin{align*} &= \left( \sqrt{4} \times \sqrt{5} - \sqrt{5} \right)^2 \\ &= \left( 2 \times \sqrt{5} - \sqrt{5} \right)^2 \\ &= \left( 2\sqrt{5} - \sqrt{5} \right)^2 \end{align*}
\begin{align*} &= \left( \sqrt{5} \right)^2 \\ &= 5 \end{align*}
Write in simplest surd form: \(\sqrt{75} \times \sqrt[3]{(48)^{-1}}\)
\begin{align*} \sqrt{75} \times \sqrt[3]{(48)^{-1}} &= \sqrt{25 \times 3} \times \sqrt[3]{\frac{1}{48}} \\ &= \sqrt{25 \times 3} \times \frac{1}{\sqrt[3]{8 \times 6}} \end{align*}
\begin{align*} &= \sqrt{25} \times \sqrt{3} \times \frac{1}{\sqrt[3]{8} \times \sqrt[3]{6}} \\ &= 5 \times \sqrt{3} \times \frac{1}{2 \times \sqrt[3]{6}} \end{align*}
\begin{align*} &= 5\sqrt{3} \times \frac{1}{2\sqrt[3]{6}} \\ &= \frac{5\sqrt{3}}{2\sqrt[3]{6}} \end{align*}
Simplify the following and write answers with positive exponents:
\(\sqrt[3]{16} \times \sqrt[3]{4}\)
\(\sqrt[3]{16} \times \sqrt[3]{4} = \sqrt[3]{16 \times 4} = \sqrt[3]{64} = 4\)
\(\sqrt{a^2b^3} \times \sqrt{b^5c^4}\)
\(\sqrt{a^2b^3} \times \sqrt{b^5c^4} = \sqrt{a^2b^8c^4} = ab^4c^2\)
\(\dfrac{\sqrt{12}}{\sqrt{3}}\)
\(\dfrac{\sqrt{12}}{\sqrt{3}} = \sqrt{\dfrac{12}{3}} = \sqrt{4} = 2\)
\(\sqrt{x^2y^{13}} \div \sqrt{y^5}\)
\(\sqrt{x^2y^{13}} \div \sqrt{y^5} = \sqrt{\frac{x^2y^{13}}{y^5}} = \sqrt{x^2y^8} = xy^4\)
Simplify the following:
\(\left( \dfrac{1}{a} - \dfrac{1}{b} \right)^{-1}\)
\(\dfrac{b-a}{a^{\frac{1}{2}} - b^{\frac{1}{2}}}\)
It is often easier to work with fractions that have rational denominators instead of surd denominators. By rationalising the denominator, we convert a fraction with a surd in the denominator to a fraction that has a rational denominator.
Rationalise the denominator: \[\frac{5x-16}{\sqrt{x}}\]
Notice that \(\frac{\sqrt{x}}{\sqrt{x}}=1\), so the value of the fraction has not been changed.
\[\frac{5x - 16}{\sqrt{x}} \times \frac{\sqrt{x}}{\sqrt{x}} = \frac{\sqrt{x}(5x - 16)}{\sqrt{x} \times \sqrt{x}}\]\begin{align*} &= \frac{\sqrt{x}(5x - 16)}{\left( \sqrt{x}\right)^2} \\ &= \frac{\sqrt{x}(5x - 16)}{x} \end{align*}
The term in the denominator has changed from a surd to a rational number. Expressing the surd in the numerator is the preferred way of writing expressions.
Write the following with a rational denominator: \[\frac{y-25}{\sqrt{y}+5}\]
To eliminate the surd from the denominator, we must multiply the fraction by an expression that will result in a difference of two squares in the denominator.
\[\frac{y-25}{\sqrt{y}+5} \times \frac{\sqrt{y}-5}{\sqrt{y}-5}\]\begin{align*} &= \frac{(y-25)(\sqrt{y}-5)}{(\sqrt{y}+5)(\sqrt{y}-5)} \\ &= \frac{(y-25)(\sqrt{y}-5)}{(\sqrt{y})^2 -25} \\ &= \frac{(y-25)(\sqrt{y}-5)}{y-25} \\ &= \sqrt{y}-5 \end{align*}
Rationalise the denominator in each of the following:
\(\dfrac{10}{\sqrt{5}}\)
\(\dfrac{3}{\sqrt{6}}\)
\(\dfrac{2}{\sqrt{3}} \div \dfrac{\sqrt{2}}{3}\)
\(\dfrac{3}{\sqrt{5}-1}\)
\(\dfrac{x}{\sqrt{y}}\)
\(\dfrac{\sqrt{3} + \sqrt{7}}{\sqrt{2}}\)
\(\dfrac{3\sqrt{p} - 4}{\sqrt{p}}\)
\(\dfrac{t-4}{\sqrt{t} + 2}\)
\(\left( 1 + \sqrt{m} \right)^{-1}\)
\(a \left( \sqrt{a} \div \sqrt{b} \right)^{-1}\)
Previous
1.1 Revision
|
Table of Contents |
Next
1.3 Solving surd equations
|