Home Practice
For learners and parents For teachers and schools
Textbooks
Full catalogue
Leaderboards
Learners Leaderboard Classes/Grades Leaderboard Schools Leaderboard
Pricing Support
Help centre Contact us
Log in

We think you are located in United States. Is this correct?

6.6 Summary

6.6 Summary (EMBHT)

square identity

quotient identity

\(\cos^2\theta + \sin^2\theta = 1\) \(\tan\theta = \dfrac{\sin\theta}{\cos\theta}\)
41e09cda20df9b26b594f4f83f0b47ae.png

negative angles

periodicity identities

co-function identities

\(\sin (-\theta) = - \sin \theta\) \(\sin (\theta \pm \text{360}\text{°}) = \sin \theta\) \(\sin (\text{90}\text{°} - \theta) = \cos \theta\)
\(\cos (-\theta) = \cos \theta\) \(\cos (\theta \pm \text{360}\text{°}) = \cos \theta\) \(\cos (\text{90}\text{°} - \theta) = \sin \theta\)

sine rule

area rule

cosine rule

\(\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}\) area \(\triangle ABC = \frac{1}{2} bc \sin A\) \(a^2 = b^2 + c^2 - 2 bc \cos A\)
\(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}\) area \(\triangle ABC = \frac{1}{2} ac \sin B\) \(b^2 = a^2 + c^2 - 2 ac \cos B\)
area \(\triangle ABC = \frac{1}{2} ab \sin C\) \(c^2 = a^2 + b^2 - 2 ab \cos C\)
bfe67719a672d19c3cd42077c2e84ea6.png

General solution:

  1. \begin{align*} \text{If } \sin \theta &= x \\ \theta &= \sin^{-1}x + k \cdot \text{360}\text{°} \\ \text{or } \theta &= \left( \text{180}\text{°} - \sin^{-1}x \right) + k \cdot \text{360}\text{°} \end{align*}
  2. \begin{align*} \text{If } \cos \theta &= x \\ \theta &= \cos^{-1}x + k \cdot \text{360}\text{°} \\ \text{or } \theta &= \left( \text{360}\text{°} - \cos^{-1}x \right) + k \cdot \text{360}\text{°} \end{align*}
  3. \begin{align*} \text{If } \tan \theta &= x \\ \theta &= \tan^{-1}x + k \cdot \text{180}\text{°} \end{align*}

    for \(k \in \mathbb{Z}\).

How to determine which rule to use:

  • Area rule:

    • no perpendicular height is given
  • Sine rule:

    • no right angle is given
    • two sides and an angle are given (not the included angle)
    • two angles and a side are given
  • Cosine rule:

    • no right angle is given
    • two sides and the included angle angle are given
    • three sides are given
temp text