\(4 \cos \alpha = 2\)
In the fourth quadrant:
\begin{align*} \alpha &= \text{360}\text{°} - \text{60}\text{°} \\ &= \text{300}\text{°} \end{align*}\(\alpha = \text{60}\text{°}; \text{300}\text{°}\)
Previous
6.3 Reduction formula
|
Next
6.5 Area, sine, and cosine rules
|
Solving trigonometric equations requires that we find the value of the angles that satisfy the equation. If a specific interval for the solution is given, then we need only find the value of the angles within the given interval that satisfy the equation. If no interval is given, then we need to find the general solution. The periodic nature of trigonometric functions means that there are many values that satisfy a given equation, as shown in the diagram below.
Solve for \(\theta\) (correct to one decimal place), given \(\tan \theta = 5\) and \(\theta \in [\text{0}\text{°};\text{360}\text{°}]\).
This value of \(\theta\) is an acute angle which lies in the first quadrant and is called the reference angle.
The CAST diagram indicates that \(\tan \theta\) is positive in the first and third quadrants, therefore we must determine the value of \(\theta\) such that \(\text{180}\text{°} < \theta < \text{270}\text{°}\).
Using reduction formulae, we know that \(\tan (\text{180}\text{°} + \theta) = \tan \theta\)
\begin{align*} \theta &= \text{180}\text{°} + \text{78,7}\text{°} \\ \therefore \theta &= \text{258,7}\text{°} \end{align*}\(\theta = \text{78,7}\text{°}\) or \(\theta = \text{258,7}\text{°}\).
Solve for \(\alpha\) (correct to one decimal place), given \(\cos \alpha = -\text{0,7}\) and \(\theta \in [\text{0}\text{°};\text{360}\text{°}]\).
To determine the reference angle, we do not include the negative sign. The reference angle must be an acute angle in the first quadrant, where all the trigonometric functions are positive.
\begin{align*} \text{ref } \angle &= \cos^{-1}\text{0,7} \\ &= \text{45,6}\text{°} \end{align*}The CAST diagram indicates that \(\cos \alpha\) is negative in the second and third quadrants, therefore we must determine the value of \(\alpha\) such that \(\text{90}\text{°} < \alpha < \text{270}\text{°}\).
Using reduction formulae, we know that \(\cos (\text{180}\text{°} - \alpha) = -\cos \alpha\) and \(\cos (\text{180}\text{°} + \alpha) = -\cos \alpha\)
In the second quadrant:
\begin{align*} \alpha &= \text{180}\text{°} - \text{45,6}\text{°} \\ &= \text{134,4}\text{°} \end{align*}In the third quadrant:
\begin{align*} \alpha &= \text{180}\text{°} + \text{45,6}\text{°} \\ &= \text{225,6}\text{°} \end{align*}Note: the reference angle \((\text{45,6}\text{°})\) does not form part of the solution.
\(\alpha = \text{134,4}\text{°}\) or \(\alpha = \text{225,6}\text{°}\).
Solve for \(\beta\) (correct to one decimal place), given \(\sin \beta = -\text{0,5}\) and \(\beta \in [-\text{360}\text{°};\text{360}\text{°}]\).
To determine the reference angle, we use a positive value.
\begin{align*} \text{ref } \angle &= \sin^{-1}\text{0,5} \\ &= \text{30}\text{°} \end{align*}The CAST diagram indicates that \(\sin \beta\) is negative in the third and fourth quadrants. We also need to find the values of \(\beta\) such that \(-\text{360}\text{°} \leq \beta \leq \text{360}\text{°}\).
Using reduction formulae, we know that \(\sin (\text{180}\text{°} + \beta) = - \sin \beta\) and \(\sin (\text{360}\text{°} - \beta) = - \sin \beta\)
In the third quadrant:
\begin{align*} \beta &= \text{180}\text{°} + \text{30}\text{°} \\ &= \text{210}\text{°} \\ \text{or } \beta &= -\text{180}\text{°} + \text{30}\text{°} \\ &= -\text{150}\text{°} \end{align*}In the fourth quadrant:
\begin{align*} \beta &= \text{360}\text{°} - \text{30}\text{°} \\ &= \text{330}\text{°} \\ \text{or } \beta &= \text{0}\text{°} - \text{30}\text{°} \\ &= -\text{30}\text{°} \end{align*}Notice: the reference angle \((\text{30}\text{°})\) does not form part of the solution.
\(\beta = -\text{150}\text{°}\), \(-\text{30}\)\(\text{°}\), \(\text{210}\)\(\text{°}\) or \(\text{330}\)\(\text{°}\).
Determine the values of \(\alpha\) for \(\alpha \in [\text{0}\text{°};\text{360}\text{°}]\) if:
\(4 \cos \alpha = 2\)
In the fourth quadrant:
\begin{align*} \alpha &= \text{360}\text{°} - \text{60}\text{°} \\ &= \text{300}\text{°} \end{align*}\(\alpha = \text{60}\text{°}; \text{300}\text{°}\)
\(\sin \alpha + \text{3,65} = 3\)
In the third quadrant:
\begin{align*} \alpha &= \text{180}\text{°} + \text{40,5}\text{°} \\ &= \text{220,5}\text{°} \end{align*}In the fourth quadrant:
\begin{align*} \alpha &= \text{360}\text{°} - \text{40,5}\text{°} \\ &= \text{319,5}\text{°} \end{align*}\(\alpha = \text{220,5}\text{°}; \text{319,5}\text{°}\)
\(\tan \alpha = 5\frac{1}{4}\)
In the third quadrant:
\begin{align*} \alpha &= \text{180}\text{°} + \text{79,2}\text{°} \\ &= \text{259,2}\text{°} \end{align*}\(\alpha = \text{79,2}\text{°}; \text{259,2}\text{°}\)
\(\cos \alpha + \text{0,939} = 0\)
In the third quadrant:
\begin{align*} \alpha &= \text{180}\text{°} + \text{20,1}\text{°} \\ &= \text{200,1}\text{°} \end{align*}In the fourth quadrant:
\begin{align*} \alpha &= \text{360}\text{°} - \text{20,1}\text{°} \\ &= \text{339,9}\text{°} \end{align*}\(\alpha = \text{200,1}\text{°}; \text{339,9}\text{°}\)
\(5 \sin \alpha = 3\)
In the second quadrant:
\begin{align*} \alpha &= \text{180}\text{°} - \text{20,1}\text{°} \\ &= \text{143,1}\text{°} \end{align*}\(\alpha = \text{36,9}\text{°}; \text{143,1}\text{°}\)
\(\frac{1}{2} \tan \alpha = -\text{1,4}\)
In the second quadrant:
\begin{align*} \alpha &= \text{180}\text{°} - \text{70,3}\text{°} \\ &= \text{109,7}\text{°} \end{align*}In the fourth quadrant:
\begin{align*} \alpha &= \text{360}\text{°} - \text{70,3}\text{°} \\ &= \text{289,7}\text{°} \end{align*}\(\alpha = \text{109,7}\text{°}; \text{289,7}\text{°}\)
Determine the values of \(\theta\) for \(\theta \in [-\text{360}\text{°};\text{360}\text{°}]\) if:
\(\sin \theta = \text{0,6}\)
In the second quadrant:
\begin{align*} \theta &= \text{180}\text{°} - \text{36,9}\text{°} \\ &= \text{143,1}\text{°} \end{align*}Negative angles:
\begin{align*} \theta &= \text{36,9}\text{°} - \text{360}\text{°} \\ &= -\text{323,1}\text{°} \\ \text{And } \theta &= \text{143,1}\text{°} - \text{360}\text{°} \\ &= -\text{216,9}\text{°} \end{align*}\(\theta = -\text{323,1}\text{°}; -\text{216,9}\text{°}; \text{36,9}\text{°}; \text{143,1}\text{°}\)
\(\cos \theta + \frac{3}{4} = 0\)
In the second quadrant:
\begin{align*} \theta &= \text{180}\text{°} - \text{41,4}\text{°} \\ &= \text{138,6}\text{°} \end{align*}In the third quadrant:
\begin{align*} \theta &= \text{180}\text{°} + \text{41,4}\text{°} \\ &= \text{221,4}\text{°} \end{align*}Negative angles:
\begin{align*} \theta &= \text{138,6}\text{°} - \text{360}\text{°} \\ &= -\text{221,4}\text{°} \\ \text{And } \theta &= \text{221,4}\text{°} - \text{360}\text{°} \\ &= -\text{138,6}\text{°} \end{align*}\(\theta = -\text{221,4}\text{°}; -\text{138,6}\text{°}; \text{138,6}\text{°}; \text{221,4}\text{°}\)
\(3 \tan \theta = 20\)
In the third quadrant:
\begin{align*} \theta &= \text{180}\text{°} + \text{81,5}\text{°} \\ &= \text{261,5}\text{°} \end{align*}Negative angles:
\begin{align*} \theta &= \text{81,5}\text{°} - \text{360}\text{°} \\ &= -\text{278,5}\text{°} \\ \text{And } \theta &= \text{261,5}\text{°} - \text{360}\text{°} \\ &= -\text{98,5}\text{°} \end{align*}\(\theta = -\text{278,5}\text{°}; -\text{98,5}\text{°}; \text{81,5}\text{°}; \text{261,5}\text{°}\)
\(\sin \theta = \cos \text{180}\text{°}\)
In the third quadrant:
\begin{align*} \theta &= \text{180}\text{°} + \text{90}\text{°} \\ &= \text{270}\text{°} \end{align*}Negative angles:
\begin{align*} \theta &= \text{270}\text{°} - \text{360}\text{°} \\ &= -\text{90}\text{°} \end{align*}\(\theta = -\text{90}\text{°}; \text{270}\text{°}\)
\(2 \cos \theta = \frac{4}{5}\)
In the fourth quadrant:
\begin{align*} \theta &= \text{360}\text{°} - \text{66,4}\text{°} \\ &= \text{293,6}\text{°} \end{align*}Negative angles:
\begin{align*} \theta &= \text{66,4}\text{°} - \text{360}\text{°} \\ &= -\text{293,6}\text{°} \\ \text{And } \theta &= \text{293,6}\text{°} - \text{360}\text{°} \\ &= -\text{66,4}\text{°} \end{align*}\(\theta = -\text{293,6}\text{°}; -\text{66,4}\text{°}; \text{66,4}\text{°}; \text{293,6}\text{°}\)
In the previous worked example, the solution was restricted to a certain interval. However, the periodicity of the trigonometric functions means that there are an infinite number of positive and negative angles that satisfy an equation. If we do not restrict the solution, then we need to determine the general solution to the equation. We know that the sine and cosine functions have a period of \(\text{360}\)\(\text{°}\) and the tangent function has a period of \(\text{180}\)\(\text{°}\).
Method for finding the general solution:
Determine the general solution for \(\sin \theta = \text{0,3}\) (give answers correct to one decimal place).
The CAST diagram indicates that \(\sin \theta\) is positive in the first and second quadrants.
Using reduction formulae, we know that \(\sin (\text{180}\text{°} - \theta) = \sin \theta\).
In the first quadrant:
\begin{align*} \theta &= \text{17,5}\text{°} \\ \therefore \theta &= \text{17,5}\text{°} + k \cdot \text{360}\text{°} \end{align*}In the second quadrant:
\begin{align*} \theta &= \text{180}\text{°} - \text{17,5}\text{°} \\ \therefore \theta &= \text{162,5}\text{°} + k \cdot \text{360}\text{°} \end{align*}where \(k \in \mathbb{Z}\).
We can select random values of \(k\) to check that the answers satisfy the original equation.
Let \(k = 4\):
\begin{align*} \theta &= \text{17,5}\text{°} + 4(\text{360})° \\ \therefore \theta &= \text{1 457,5}\text{°} \\ \text{And } \sin \text{1 457,5}\text{°} &= \text{0,3007} \ldots \end{align*}This solution is correct.
Similarly, if we let \(k = -2\):
\begin{align*} \theta &= \text{162,5}\text{°} - 2(\text{360})° \\ \therefore \theta &= -\text{557,5}\text{°} \\ \text{And } \sin (-\text{557,5}\text{°}) &= \text{0,3007} \ldots \end{align*}This solution is also correct.
\(\theta = \text{17,5}\text{°} + k \cdot \text{360}\text{°}\) or \(\theta = \text{162,5}\text{°} + k \cdot \text{360}\text{°}\).
Determine the general solution for \(\cos 2\theta = - \text{0,6427}\) (give answers correct to one decimal place).
The CAST diagram shows that \(\cos \theta\) is negative in the second and third quadrants.
Therefore we use the reduction formulae \(\cos (\text{180}\text{°} - \theta) = - \cos \theta\) and \(\cos (\text{180}\text{°} + \theta) = - \cos \theta\).
In the second quadrant:
\begin{align*} 2\theta &= \text{180}\text{°} - \text{50}\text{°} + k \cdot \text{360}\text{°} \\ &= \text{130}\text{°} + k \cdot \text{360}\text{°} \\ \therefore \theta &= \text{65}\text{°} + k \cdot \text{180}\text{°} \end{align*}In the third quadrant:
\begin{align*} 2\theta &= \text{180}\text{°} + \text{50}\text{°} + k \cdot \text{360}\text{°} \\ &= \text{230}\text{°} + k \cdot \text{360}\text{°} \\ \therefore \theta &= \text{115}\text{°} + k \cdot \text{180}\text{°} \end{align*}where \(k \in \mathbb{Z}\).
Remember: also divide the period \((\text{360}\text{°})\) by the coefficient of \(\theta\).
We can select random values of \(k\) to check that the answers satisfy the original equation.
Let \(k = 2\):
\begin{align*} \theta &= \text{65}\text{°} + 2(\text{180}\text{°}) \\ \therefore \theta &= \text{425}\text{°} \\ \text{And } \cos 2(\text{425})° &= -\text{0,6427} \ldots \end{align*}This solution is correct.
Similarly, if we let \(k = -5\):
\begin{align*} \theta &= \text{115}\text{°} - 5(\text{180}\text{°})\\ \therefore \theta &= -\text{785}\text{°} \\ \text{And } \cos 2(-\text{785}\text{°}) &= -\text{0,6427} \ldots \end{align*}This solution is also correct.
\(\theta = \text{65}\text{°} + k \cdot \text{180}\text{°}\) or \(\theta = \text{115}\text{°} + k \cdot \text{180}\text{°}\).
Determine the general solution for \(\tan (2\alpha - \text{10}\text{°}) = \text{2,5}\) such that \(-\text{180}\text{°} \leq \alpha \leq \text{180}\text{°}\) (give answers correct to one decimal place).
To solve this equation, it can be useful to make a substitution: let \(x = 2\alpha - \text{10}\text{°}\).
\[\tan (x) = \text{2,5}\]We see that \(\tan x\) is positive in the first and third quadrants, so we use the reduction formula \(\tan (\text{180}\text{°} + x) = \tan x\). It is also important to remember that the period of the tangent function is \(\text{180}\)\(\text{°}\).
In the first quadrant:
\begin{align*} x &= \text{68,2}\text{°} + k \cdot \text{180}\text{°} \\ \text{Substitute } x &= 2 \alpha -\text{10}\text{°} \\ 2 \alpha -\text{10}\text{°} &= \text{68,2}\text{°} + k \cdot \text{180}\text{°} \\ 2 \alpha &= \text{78,2}\text{°} + k \cdot \text{180}\text{°} \\ \therefore \alpha &= \text{39,1}\text{°} + k \cdot \text{90}\text{°} \end{align*}In the third quadrant:
\begin{align*} x &= \text{180}\text{°} + \text{68,2}\text{°} + k \cdot \text{180}\text{°} \\ &= \text{248,2}\text{°} + k \cdot \text{180}\text{°} \\ \text{Substitute } x &= 2 \alpha -\text{10}\text{°} \\ 2 \alpha -\text{10}\text{°} &= \text{248,2}\text{°} + k \cdot \text{180}\text{°} \\ 2 \alpha &= \text{258,2}\text{°} + k \cdot \text{180}\text{°} \\ \therefore \alpha &= \text{129,1}\text{°} + k \cdot \text{90}\text{°} \end{align*}where \(k \in \mathbb{Z}\).
Remember: to divide the period \((\text{180}\text{°})\) by the coefficient of \(\alpha\).
Substitute suitable values of \(k\) to determine the values of \(\alpha\) that lie within the interval (\(-\text{180}\text{°} \leq \alpha \leq \text{180}\text{°}\)).
I: \(\alpha = \text{39,1}\text{°} + k \cdot \text{90}\text{°}\) | III: \(\alpha = \text{129,1}\text{°} + k \cdot \text{90}\text{°}\) | |||
\(k = 0\) | \(\text{39,1}\)\(\text{°}\) | \(\text{129,1}\)\(\text{°}\) | ||
\(k = 1\) | \(\text{129,1}\)\(\text{°}\) | \(\text{219,1}\)\(\text{°}\) | (outside) | |
\(k = 2\) | \(\text{219,1}\)\(\text{°}\) | (outside) | ||
\(k = -1\) | \(-\text{50,9}\)\(\text{°}\) | \(\text{39,1}\)\(\text{°}\) | ||
\(k = -2\) | \(-\text{140,9}\)\(\text{°}\) | \(-\text{50,9}\)\(\text{°}\) | ||
\(k = -3\) | \(-\text{230,9}\)\(\text{°}\) | (outside) | \(-\text{140,9}\)\(\text{°}\) | |
\(k = -4\) | \(-\text{230,9}\)\(\text{°}\) | (outside) |
Notice how some of the values repeat. This is because of the periodic nature of the tangent function. Therefore we need only determine the solution:
\[\alpha = \text{39,1}\text{°} + k \cdot \text{90}\text{°}\] for \(k \in \mathbb{Z}\).
\(\alpha = -\text{140,9}\text{°}\); \(-\text{50,9}\)\(\text{°}\); \(\text{39,1}\)\(\text{°}\) or \(\text{129,1}\)\(\text{°}\).
Determine the general solution for \(\sin (\theta - \text{20}\text{°}) = \cos 2\theta\).
The right hand side of the equation is positive, and the sine function is positive in the first and second quadrants. Therefore, we will reduce the equation as if the solution were in the first and second quadrants (using the angle and \(\text{180}\text{°}\) minus the angle).
Solution 1:
\begin{align*} \theta - \text{20}\text{°} &= \text{90}\text{°} - 2\theta + k \cdot \text{360}\text{°} \\ 3\theta &= \text{110}\text{°} + k \cdot \text{360}\text{°} \\ \therefore \theta &= \text{36,67}\text{°} + k \cdot \text{120}\text{°} \end{align*}Solution 2:
\begin{align*} \theta - \text{20}\text{°} &= \text{180}\text{°} - (\text{90}\text{°} - 2\theta) + k \cdot \text{360}\text{°} \\ \theta - \text{20}\text{°} &= \text{180}\text{°} - \text{90}\text{°} + 2\theta + k \cdot \text{360}\text{°} \\ -\theta &= \text{110}\text{°} + k \cdot \text{360}\text{°}\\ \theta &= -\text{110}\text{°} + k \cdot \text{360}\text{°} \\ \theta &= \text{250}\text{°} + k \cdot \text{360}\text{°} \end{align*}where \(k \in \mathbb{Z}\).
For the first solution:
\begin{align*} \sin(\theta - \text{20}\text{°}) &= \sin(\text{36,67}\text{°} - \text{20}\text{°}) \\ &= \text{0,29} \end{align*}and
\begin{align*} \cos2\theta &= \cos(2 \times \text{36,67}\text{°}) \\ &= \text{0,29} \end{align*}For the second solution:
\begin{align*} \sin(\theta - \text{20}\text{°}) &= \sin(\text{250}\text{°} - \text{20}\text{°}) \\ &= -\text{0,77} \end{align*}and
\begin{align*} \cos2\theta &= \cos(2 \times \text{250}\text{°}) \\ &= -\text{0,77} \end{align*}\(\theta = \text{36,67}\text{°} + k \cdot \text{120}\text{°}\) or \(\theta = \text{250}\text{°} + k \cdot \text{360}\text{°}, \quad k \in \mathbb{Z}\)
\(\cos (\theta + \text{25}\text{°}) = \text{0,231}\)
\(\theta = -\text{128,36}\text{°}; -\text{101,64}\text{°}; \text{51,64}\text{°}\)
\(\sin 2\alpha = -\text{0,327}\)
\(\theta = -\text{80,45}\text{°}; -\text{9,54}\text{°}; \text{99,55}\text{°}; \text{170,46}\text{°}\)
\(2 \tan \beta = -\text{2,68}\)
\(\theta = -\text{53,27}\text{°}; \text{126,73}\text{°}\)
\(\cos \alpha = 1\)
\(\alpha = \text{0}\text{°}\)
\(4 \sin \theta = 0\)
\(\theta = -\text{180}\text{°}; \text{0}\text{°}; \text{180}\text{°}\)
\(\cos \theta = -1\)
\(\theta = -\text{180}\text{°}; \text{180}\text{°}\)
\(\tan \frac{\theta}{2} = \text{0,9}\)
\(4 \cos \theta +3 = 1\)
\(\theta = -\text{120}\text{°}; \text{120}\text{°}\)
\(\sin 2\theta = -\frac{\sqrt{3}}{2}\)
\(\theta = -\text{60}\text{°}; -\text{30}\text{°}; \text{120}\text{°}; \text{150}\text{°}\)
Find the general solution for each equation.
\(\cos (\theta + \text{20}\text{°}) = 0\)
\(\theta = - \text{20}\text{°} + n \cdot \text{360}\text{°}\)
\(\sin 3\alpha = -1\)
\(\alpha = \text{30}\text{°} + n \cdot \text{120}\text{°}\)
\(\tan 4\beta = \text{0,866}\)
\(\beta = \text{10,25}\text{°} + n \cdot \text{45}\text{°} \text{ or }\beta = \text{55,25}\text{°} + n \cdot \text{45}\text{°}\)
\(\cos (\alpha - \text{25}\text{°}) = \text{0,707}\)
\(\alpha = \text{70}\text{°} + n \cdot \text{360}\text{°} \text{ or }\alpha = \text{340}\text{°} + n \cdot \text{360}\text{°}\)
\(2 \sin \frac{3\theta}{2} = -1\)
\(\theta = \text{140}\text{°} + n \cdot \text{240}\text{°} \text{ or }\theta = \text{220}\text{°} + n \cdot \text{240}\text{°}\)
\(5 \tan (\beta + \text{15}\text{°}) = \frac{5}{\sqrt{3}}\)
Solving quadratic trigonometric equations
We can use our knowledge of algebraic equations to solve quadratic trigonometric equations.
Find the general solution of \(4 \sin^2 \theta = 3\).
The CAST diagram shows that \(\sin \theta\) is positive in the first and second quadrants and negative in the third and fourth quadrants.
Positive in the first and second quadrants:
\begin{align*} \theta &= \text{60}\text{°} + k \cdot \text{360}\text{°} \\ \text{or } \theta &= \text{180}\text{°} - \text{60}\text{°} + k \cdot \text{360}\text{°} \\ &= \text{120}\text{°} + k \cdot \text{360}\text{°} \end{align*}Negative in the third and fourth quadrants:
\begin{align*} \theta &= \text{180}\text{°} + \text{60}\text{°} + k \cdot \text{360}\text{°} \\ &= \text{240}\text{°} + k \cdot \text{360}\text{°} \\ \text{or } \theta &= \text{360}\text{°} - \text{60}\text{°} + k \cdot \text{360}\text{°} \\ &= \text{300}\text{°} + k \cdot \text{360}\text{°} \end{align*}where \(k \in \mathbb{Z}\).
\(\theta = \text{60}\text{°} + k \cdot \text{360}\text{°}\) or \(\text{120}\text{°} + k \cdot \text{360}\text{°}\) or \(\text{240}\text{°} + k \cdot \text{360}\text{°}\) or \(\text{300}\text{°} + k \cdot \text{360}\text{°}\)
Find \(\theta\) if \(2 \cos^2 \theta - \cos \theta - 1 = 0\) for \(\theta \in [-\text{180}\text{°};\text{180}\text{°}]\).
or
\begin{align*} \cos \theta - 1 &= 0 \\ \cos \theta &= 1 \\ \therefore \text{ref } \angle &= \text{0}\text{°} \\ \text{II and IV quadrants: } \theta &= k \cdot \text{360}\text{°} \end{align*}where \(k \in \mathbb{Z}\).
Determine the values of \(\theta\) that lie within the the given interval \(\theta \in [-\text{180}\text{°};\text{180}\text{°}]\) by substituting suitable values of \(k\).
If \(k = -1\),
\begin{align*} \theta &= \text{240}\text{°} + k \cdot \text{360}\text{°} \\ &= \text{240}\text{°} - (\text{360}\text{°}) \\ &= -\text{120}\text{°} \end{align*}If \(k = 0\),
\begin{align*} \theta &= \text{120}\text{°} + k \cdot \text{360}\text{°} \\ &= \text{120}\text{°} + 0(\text{360}\text{°}) \\ &= \text{120}\text{°} \end{align*}If \(k = 1\),
\begin{align*} \theta &= k \cdot \text{360}\text{°} \\ &= 0(\text{360}\text{°}) \\ &= \text{0}\text{°} \end{align*}We can simplify the given equation by letting \(y = \cos \theta\) and then factorising as:
\begin{align*} 2y^2 - y - 1 &= 0 \\ (2 y + 1)(y - 1) &= 0 \\ \therefore y = -\frac{1}{2} &\text{ or } y = 1 \end{align*}We substitute \(y = \cos \theta\) back into these two equations and solve for \(\theta\).
\(\theta = -\text{120}\text{°}\); \(\text{0}\)\(\text{°}\); \(\text{120}\)\(\text{°}\)
Find \(\alpha\) if \(2 \sin^2 \alpha - \sin \alpha \cos \alpha = 0\) for \(\alpha \in [\text{0}\text{°};\text{360}\text{°}]\).
or
\begin{align*} 2 \sin \alpha - \cos \alpha &= 0 \\ 2 \sin \alpha &= \cos \alpha \end{align*}To simplify further, we divide both sides of the equation by \(\cos \alpha\).
\begin{align*} \frac{2 \sin \alpha}{\cos \alpha} &= \frac{\cos \alpha}{\cos \alpha} \qquad (\cos \alpha \ne 0)\\ 2 \tan \alpha &= 1 \\ \tan \alpha &= \frac{1}{2} \\ \therefore \text{ref } \angle &= \text{26,6}\text{°} \\ \therefore \alpha &= \text{26,6}\text{°} + k \cdot \text{180}\text{°} \end{align*}where \(k \in \mathbb{Z}\).
Determine the values of \(\alpha\) that lie within the the given interval \(\alpha \in [\text{0}\text{°}; \text{360}\text{°}]\) by substituting suitable values of \(k\).
If \(k = 0\):
\begin{align*} \alpha &= \text{0}\text{°} \\ \text{or } \alpha &= \text{26,6}\text{°} \end{align*}If \(k = 1\):
\begin{align*} \alpha &= \text{180}\text{°} \\ \text{or } \alpha &= \text{26,6}\text{°} + \text{180}\text{°} \\ &= \text{206,6}\text{°} \end{align*}If \(k = 2\):
\[\alpha = \text{360}\text{°}\]\(\alpha = \text{0}\text{°}\); \(\text{26,6}\)\(\text{°}\); \(\text{180}\)\(\text{°}\); \(\text{206,6}\)\(\text{°}\); \(\text{360}\)\(\text{°}\)
Find the general solution for each of the following equations:
\(\cos 2\theta = 0\)
\(\theta = \text{45}\text{°} + k \cdot \text{180}\text{°}\) or \(\theta = \text{135}\text{°} + k \cdot \text{180}\text{°}\)
\(\sin (\alpha + \text{10}\text{°}) = \frac{\sqrt{3}}{2}\)
\(\alpha = \text{50}\text{°} + k \cdot \text{360}\text{°}\) or \(\alpha = \text{110}\text{°} + k \cdot \text{360}\text{°}\)
\(2 \cos \frac{\theta}{2} - \sqrt{3} = 0\)
\(\theta = \text{60}\text{°} + k \cdot \text{720}\text{°}\) or \(\theta = \text{660}\text{°} + k \cdot \text{720}\text{°}\)
\(\frac{1}{2} \tan (\beta - \text{30}\text{°}) = -1\)
\(\beta = \text{146,6}\text{°} + k \cdot \text{180}\text{°}\)
\(5 \cos \theta = \tan \text{300}\text{°}\)
\(\theta = \text{110,27}\text{°} + k \cdot \text{360}\text{°}\) or \(\theta = \text{249,73}\text{°} + k \cdot \text{360}\text{°}\)
\(3 \sin \alpha = -\text{1,5}\)
\(\alpha = \text{210}\text{°} + k \cdot \text{360}\text{°}\) or \(\alpha = \text{330}\text{°} + k \cdot \text{360}\text{°}\)
\(\sin 2 \beta = \cos (\beta + \text{20}\text{°})\)
\(\beta = \text{23,3}\text{°} + k \cdot \text{120}\text{°}\)
\(\text{0,5} \tan \theta + \text{2,5}= \text{1,7}\)
\(\theta = \text{122}\text{°} + k \cdot \text{180}\text{°}\)
\(\sin (3 \alpha - \text{10}\text{°}) = \sin (\alpha + \text{32}\text{°})\)
\(\alpha = \text{21}\text{°} + k \cdot \text{180}\text{°}\) or \(\alpha = \text{39,5}\text{°} + k \cdot \text{90}\text{°}\)
\(\sin 2 \beta = \cos 2 \beta\)
\(\beta = \text{22,5}\text{°} + k \cdot \text{90}\text{°}\)
Find \(\theta\) if \(\sin^2 \theta + \frac{1}{2} \sin \theta = 0\) for \(\theta \in [\text{0}\text{°};\text{360}\text{°}]\).
\(\theta = \text{0}\text{°}, \text{180}\text{°}, \text{210}\text{°}, \text{330}\text{°} \text{ or } \text{360}\text{°}\)
Determine the general solution for each of the following:
\(2 \cos^2 \theta - 3 \cos \theta = 2\)
\(\theta = \text{120}\text{°} + k \cdot \text{360}\text{°}\) or \(\theta = \text{240}\text{°} + k \cdot \text{360}\text{°}\)
\(3 \tan^2 \theta + 2 \tan \theta = 0\)
\(\theta = \text{0}\text{°} + k \cdot \text{180}\text{°}\) or \(\theta = \text{146,3}\text{°} + k \cdot \text{180}\text{°}\)
\(\cos^2 \alpha = \text{0,64}\)
\(\alpha = \text{36,9}\text{°} + k \cdot \text{360}\text{°}\) or \(\alpha = \text{143,1}\text{°} + k \cdot \text{360}\text{°}\) or \(\alpha = \text{216,9}\text{°} + k \cdot \text{360}\text{°}\) or \(\alpha = \text{323,1}\text{°} + k \cdot \text{360}\text{°}\)
\(\sin (4\beta + \text{35}\text{°}) = \cos (\text{10}\text{°} - \beta)\)
\(\beta = \text{15}\text{°} + k \cdot \text{120}\text{°}\) or \(\beta = \text{75}\text{°} + k \cdot \text{120}\text{°}\)
\(\sin (\alpha + \text{15}\text{°}) = 2 \cos (\alpha + \text{15}\text{°})\)
\(\alpha = \text{48,4}\text{°} + k \cdot \text{180}\text{°}\)
\(\sin^2 \theta - 4\cos^2 \theta = 0\)
\(\theta = \text{63,4}\text{°} + k \cdot \text{180}\text{°}\) or \(\theta = \text{116,6}\text{°} + k \cdot \text{180}\text{°}\)
\(\dfrac{\cos (2 \theta + \text{30}\text{°})}{2} + \text{0,38} = 0\)
\(\theta = \text{54,8}\text{°} + k \cdot \text{180}\text{°}\) or \(\theta = \text{95,25}\text{°} + k \cdot \text{180}\text{°}\)
Find \(\beta\) if \(\frac{1}{3} \tan \beta = \cos \text{200}\text{°}\) for \(\beta \in [-\text{180}\text{°};\text{180}\text{°}]\).
\(\beta = -\text{70,5}\text{°}\) or \(\beta = \text{109,5}\text{°}\)
Previous
6.3 Reduction formula
|
Table of Contents |
Next
6.5 Area, sine, and cosine rules
|