Home Practice
For learners and parents For teachers and schools
Textbooks
Full catalogue
Leaderboards
Learners Leaderboard Classes/Grades Leaderboard Schools Leaderboard
Pricing Support
Help centre Contact us
Log in

We think you are located in United States. Is this correct?

End of chapter exercises

End of chapter exercises

Textbook Exercise 3.4

Find the first five terms of the quadratic sequence defined by:

\({T}_{n}={n}^{2}+2n+1\)
\(-4; 9; 16; 25; 36\)

Determine whether each of the following sequences is:

  • a linear sequence,
  • a quadratic sequence,
  • or neither.

\(6;9;14;21;30;...\)

\begin{align*} \text{First differences: } &= 3; 5; 7; 9; \\ \text{Second difference: } &= 2 \end{align*}

Quadratic sequence

\(1;7;17;31;49;...\)

\begin{align*} \text{First differences: } &= 6; 10; 14; 18 \\ \text{Second difference: } &= 4 \end{align*}

Quadratic sequence

\(8;17;32;53;80;...\)

\begin{align*} \text{First differences: } &= 9; 15; 21; 27 \\ \text{Second difference: } &= 6 \end{align*}

Quadratic sequence

\(9;26;51;84;125;...\)

\begin{align*} \text{First differences: } &= 17; 25; 33; 41 \\ \text{Second difference: } &= 8 \end{align*}

Quadratic sequence

\(2;20;50;92;146;...\)

\begin{align*} \text{First differences: } &= 18; 30; 42; 54 \\ \text{Second difference: } &= 12 \end{align*}

Quadratic sequence

\(5;19;41;71;109;...\)

\begin{align*} \text{First differences: } &= 14; 22; 30; 38 \\ \text{Second difference: } &= 8 \end{align*}

Quadratic sequence

\(2;6;10;14;18;...\)

\[\text{First difference: } = 4\]

Linear sequence

\(3;9;15;21;27;...\)

\[\text{First difference: } = 6\]

Linear sequence

\(1;\text{2,5};5;\text{8,5};13;...\)

\begin{align*} \text{First differences: } &= \text{1,5};~ \text{2,5};~ \text{3,5};~ \text{4,5} \\ \text{Second difference: } &= 1 \end{align*}

Quadratic sequence

\(10;24;44;70;102;...\)

\begin{align*} \text{First differences: } &= 14; 20; 26; 32 \\ \text{Second difference: } &= 16 \end{align*}

Quadratic sequence

\(2\frac{1}{2}; 6; 10\frac{1}{2}; 16; 22\frac{1}{2}; \ldots\)

\begin{align*} \text{First differences: } &= \text{3,5};~ \text{4,5};~ \text{5,5};~ \text{6,5} \\ \text{Second difference: } &= 1 \end{align*}

Quadratic sequence

\(3p^2; 6p^2; 9p^2; 12p^2; 15p^2; \ldots\)

\[\text{First difference: } = 3p^2\]

Linear sequence

\(2k; 8k; 18k; 32k; 50k; \ldots\)

\begin{align*} \text{First differences: } &= 6k; 10k; 14k; 18k \\ \text{Second difference: } &= 4k \end{align*}

Quadratic sequence

Given the pattern: \(16; x; 46; \ldots\), determine the value of \(x\) if the pattern is linear.

\begin{align*} x - 16 &= 46 - x \\ 2x &= 62 \\ \therefore x &= 31 \end{align*}

Given \(T_n = 2n^2\), for which value of \(n\) does \(T_n = 242\)?

\begin{align*} 2n^2 &= 242 \\ n^2 &= 121 \\ \therefore n &= 11 \end{align*}

Given \({T}_{n}=3{n}^{2}\), find \({T}_{11}\).

\begin{align*} T_n &= 3n^2 \\ \therefore T_11 &= 3(11)^2 \\ &= 363 \end{align*}

Given \(T_n = n^2+4\), for which value of \(n\) does \(T_n = 85\)?

\begin{align*} n^2 + 4 &= 85 \\ n^2 &= 81 \\ \therefore n &= 9 \end{align*}

Given \({T}_{n}=4{n}^{2}+3n-1\), find \({T}_{5}\).

\begin{align*} T_n &= 4n^2 + 3n - 1 \\ \therefore T_5 &= 4(5)^2 + 3(5) - 1\\ &= 100 + 15 - 1 \\ &= 114 \end{align*}

Given \(T_n = \dfrac{3}{2}n^2\), for which value of \(n\) does \(T_n = 96\)?

\begin{align*} \dfrac{3}{2}n^2 &= 96 \\ n^2 &= 96 \times \frac{2}{3} \\ &= 64 \\ \therefore n &= 8 \end{align*}

For each of the following patterns, determine:

  • the next term in the pattern,
  • and the general term,
  • the tenth term in the pattern.

\(3; 7; 11; 15; \ldots\)

\begin{align*} d &= 7 - 3 \\ &= 4 \\ T_5 &= 15 + 4 \\ &= 19 \\ T_n &= 4n - 1 \\ T_{10} &= 4(10) - 1 \\ &= 39 \end{align*}

\(17; 12; 7; 2; \ldots\)

\begin{align*} d &= 12 - 17 \\ &= -5 \\ T_5 &= 2 - 5 \\ &= -3 \\ T_n &= 22 - 5n \\ T_{10} &= 22 - 5(10) \\ &= -28 \end{align*}

\(\frac{1}{2}; 1; 1\frac{1}{2}; 2; \ldots\)

\begin{align*} d &= 1 - \frac{1}{2} \\ &= \frac{1}{2} \\ T_5 &= 2 + \frac{1}{2} \\ &= 2 \frac{1}{2} \\ T_n &= \frac{1}{2}n \\ T_{10} &= \frac{1}{2}(10) \\ &= 5 \end{align*}

\(a; a+b; a+2b; a+3b; \ldots\)

\begin{align*} d &= a + b - a \\ &= b \\ T_5 &= a + 3b + b \\ &= a + 4b \\ T_n &= a - b + bn \\ T_{10} &= a - b + b(10) \\ &= a + 9b \end{align*}

\(1; -1; -3; -5; \ldots\)

\begin{align*} d &= -1 - 1 \\ &= -2 \\ T_5 &= -5 -2 \\ &= -7 \\ T_n &= 3 - 2n \\ T_{10} &= 3 - 2(10) \\ &= -17 \end{align*}

For each of the following sequences, find the equation for the general term and then use the equation to find \({T}_{100}\).

\(4;7;12;19;28;...\)

9fdaa83be730b67b978cc74ef7b3bf4d.png

\(2;8;14;20;26;...\)

\begin{align*} d &= 8 - 2 \\ &= 6 \\ \therefore T_n &= 6n - 4 \end{align*} \begin{align*} T_n &= 6n - 4 \\ \therefore T_{100} &= 6(100) - 4 \\ &= 596 \end{align*}

\(7;13;23;37;55;...\)

3052bf142e789e4b56d73485661f1a6e.png

\(5;14;29;50;77;...\)

b0136aaccb251d0c2a9156e802c332d7.png

Given: \(T_n = 3n-1\)

Write down the first five terms of the sequence.

\(2; 5; 8; 11; 14\)

What do you notice about the difference between any two consecutive terms?

Constant difference, \(d=3\)

Will this always be the case for a linear sequence?

Yes

Given the following sequence: \(-15; -11; -7; \ldots ; 173\)

Determine the equation for the general term.

\begin{align*} d &= -11 - (-15) \\ &= 4 \\ T_n &= 4n - 19 \end{align*}

Calculate how many terms there are in the sequence.

\begin{align*} T_n &= 4n - 19 \\ 173 &= 4n - 19 \\ 192 &= 4n \\ \therefore 48 &= n \end{align*}

Given \(3; 7; 13; 21; 31; \ldots\)

Thabang determines that the general term is \(T_n = 4n - 1\). Is he correct? Explain.

\begin{align*} \text{First differences: } &= 4; 6; 8; 10 \\ \text{Second difference: } &= 2 \end{align*}

Thabang's general term \(T_n = 4n - 1\) describes a linear sequence and this is a quadratic sequence.

Cristina determines that the general term is \(T_n = n^2 + n + 1\). Is she correct? Explain.

\begin{align*} T_n &= an^2 + bn + c \\ \text{Second difference: } 2a &= 2 \\ \therefore a &= 1 \\ 3a + b &= 4 \\ b &= 4 - 3(1) \\ \therefore b &= 1 \\ a + b + c &= 3 \\ \therefore c &= 3 - a - b \\ &= 3 - 1 - 1 \\ \therefore c &= 1 \\ \therefore T_n &= n^2 + n + 1 \end{align*}

Given the following pattern of blocks:

80b29662534c658fdb3c6af28c0680db.png

Draw pattern \(\text{5}\).

48b4ed778ef8296ccb7362aad9f8e43f.png

Complete the table below:

pattern number \((n)\) \(\text{2}\) \(\text{3}\) \(\text{4}\) \(\text{5}\) \(\text{10}\) \(\text{250}\) \(n\)
number of white blocks \((w)\) \(\text{4}\) \(\text{8}\)
pattern number \((n)\) \(\text{2}\) \(\text{3}\) \(\text{4}\) \(\text{5}\) \(\text{10}\) \(\text{250}\) \(n\)
number of white blocks \((w)\) \(\text{4}\) \(\text{8}\) \(\text{12}\) \(\text{16}\) \(\text{36}\) \(\text{996}\) \(4n - 4\)

Is this a linear or a quadratic sequence?

Linear

Cubes of volume \(\text{1}\) \(\text{cm$^{3}$}\) are stacked on top of each other to form a tower:

75098e556f43cc4bc7216d6f7a259c7e.png

Complete the table for the height of the tower:

tower number \((n)\) \(\text{1}\) \(\text{2}\) \(\text{3}\) \(\text{4}\) \(\text{10}\) \(n\)
height of tower \((h)\) \(\text{2}\)
tower number \((n)\) \(\text{1}\) \(\text{2}\) \(\text{3}\) \(\text{4}\) \(\text{10}\) \(n\)
height of tower \((h)\) \(\text{2}\) \(\text{3}\) \(\text{4}\) \(\text{5}\) \(\text{11}\) \(n+1\)

What type of sequence is this?

Linear

Now consider the number of cubes in each tower and complete the table below:

tower number \((n)\) \(\text{1}\) \(\text{2}\) \(\text{3}\) \(\text{4}\)
number of cubes \((c)\) \(\text{3}\)
tower number \((n)\) \(\text{1}\) \(\text{2}\) \(\text{3}\) \(\text{4}\)
number of cubes \((c)\) \(\text{3}\) \(\text{6}\) \(\text{10}\) \(\text{15}\)

What type of sequence is this?

Quadratic

Determine the general term for this sequence.

\begin{align*} T_n &= an^2 + bn + c \\ \text{Second difference: } 2a &= 1 \\ \therefore a &= \frac{1}{2} \\ 3a + b &= 3 \\ b &= 3 - 3(\frac{1}{2}) \\ \therefore b &= \frac{3}{2} \\ a + b + c &= 3 \\ \therefore c &= 3 - a - b \\ &= 3 - \frac{1}{2} - \frac{3}{2} \\ \therefore c &= 1 \\ \therefore T_n &= \frac{1}{2}n^2 + \frac{3}{2}n + 1 \end{align*}

How many cubes are needed for tower number \(\text{21}\)?

\begin{align*} T_n &= \frac{1}{2}n^2 + \frac{3}{2}n + 1 \\ \therefore T_{21} &= \frac{1}{2}(21)^{2}+ \frac{3}{2}(21) + 1 \\ &= \frac{441}{2} + \frac{63}{2} + \frac{2}{2} \\ &= 253 \end{align*}

How high will a tower of \(\text{496}\) cubes be?

\begin{align*} T_n &= \frac{1}{2}n^2 + \frac{3}{2}n + 1\\ 496 &= \frac{1}{2}n^2 + \frac{3}{2}n + 1 \\ 0 &= \frac{1}{2}n^2 + \frac{3}{2}n - 495 \\ &= n^2 + 3n - 990 \\ &= (n - 30)(n + 33) \\ \therefore n = 30 &\text{ or } n = -33 \\ \therefore n &= 30 \\ \text{And } h &= n + 1 \\ &= 30 + 1 \\ &= \text{31}\text{ cm} \end{align*}

A quadratic sequence has a second term equal to \(\text{1}\), a third term equal to \(-\text{6}\) and a fourth term equal to \(-\text{14}\).

Determine the second difference for this sequence.

\begin{align*} T_3 - T_2 &= -6 -(1) \\ &= -7 \\ T_4 - T_3 &= -14 - (-6) \\ &= -8 \\ \therefore \text{Second difference} &= -1 \end{align*}

Hence, or otherwise, calculate the first term of the pattern.

\begin{align*} T_{1} &= 1 + 6 \\ &= 7 \end{align*}

There are \(\text{15}\) schools competing in the U16 girls hockey championship and every team must play two matches — one home match and one away match.

Use the given information to complete the table:

no. of schools no. of matches
\(\text{1}\) \(\text{0}\)
\(\text{2}\)
\(\text{3}\)
\(\text{4}\)
\(\text{5}\)
no. of schools no. of matches
\(\text{1}\) \(\text{0}\)
\(\text{2}\) \(\text{2}\)
\(\text{3}\) \(\text{6}\)
\(\text{4}\) \(\text{12}\)
\(\text{5}\) \(\text{20}\)

Calculate the second difference.

\begin{align*} T_2 - T_1 &= 2 - 0 \\ &= 2 \\ T_3 - T_2 &= 6 - 2 \\ &= 4 \\ T_4 - T_3 &= 12 -6 \\ &= 6 \\ T_5 - T_4 &= 20 - 12 \\ &= 8 \\ \therefore \text{Second difference} &= 2 \end{align*}

Determine a general term for the sequence.

\begin{align*} T_n &= an^2 + bn + c \\ \text{Second difference: } 2a &= 2 \\ \therefore a &= 1 \\ 3a + b &= 2 \\ b &= 2 - 3(1) \\ \therefore b &= -1 \\ a + b + c &= 0 \\ \therefore c &= - a - b \\ &= -1 - (-1) \\ \therefore c &= 0 \\ \therefore T_n &= n^2 -n \end{align*}

How many matches will be played if there are \(\text{15}\) schools competing in the championship?

\begin{align*} T_n &= n^2 -n \\ T_{15} &= (15)^2 - 15 \\ &= 225 - 15 \\ &= 210 \end{align*}

If \(\text{600}\) matches must be played, how many schools are competing in the championship?

\begin{align*} T_n &= n^2 -n \\ 600 &= n^2 -n \\ 0 &= n^2 -n - 600\\ &= (n - 25)(n + 24)\\ \therefore n = 25 &\text{ or } n = -24 \\ \therefore n &= 25 \end{align*}

The first term of a quadratic sequence is \(\text{4}\), the third term is \(\text{34}\) and the common second difference is \(\text{10}\). Determine the first six terms in the sequence.

\begin{align*} \text{Let } T_2 &= x \\ \therefore T_2 - T_1 &= x - 4 \\ \text{And } T_3 - T_2 &= 34 - x \\ \text{Second difference } &= (T_3 - T_2) - (T_2 - T_1) \\ &= (34 - x) - (x - 4)\\ \therefore 10 &= 38 - 2x \\ 2x &= 28 \\ \therefore x &= 14 \end{align*}

\(4; 14; 34; 64; 104; 154\)

Challenge question:

Given that the general term for a quadratic sequences is \(T_n = an^2 + bn + c\), let \(d\) be the first difference and \(D\) be the second common difference.

Show that \(a = \dfrac{D}{2}\).

\begin{align*} T_n &= an^2 + bn +c \\ T_1 &= a(1)^2 + b(1) +c \\ &= a + b + c \\ T_2 &= a(2)^2 + b(2) +c \\ &= 4a + 2b + c\\ T_3 &= a(3)^2 + b(3) +c \\ &= 9a + 6b + c\\ \text{First difference } d &= T_2 - T_1 \\ \therefore d &= (4a + 2b + c) - (a + b + c ) \\ &= 3a + b \\ \therefore b &= d - 3a \\ \text{Second difference } D &= (T_3 - T_2) - (T_2 - T_1)\\ \therefore D &= (5a + b) - (3a + b) \\ &= 2a \\ \therefore a &= \dfrac{D}{2} \end{align*}

Show that \(b = d - \dfrac{3}{2}D\).

\begin{align*} a &= \dfrac{D}{2} \\ b &= d - 3a \\ \therefore b &= d - 3 \left( \dfrac{D}{2} \right) \\ &= d - \dfrac{3}{2} D \end{align*}

Show that \(c = T_1 - d + D\).

\begin{align*} T_1 &= a + b + c \\ \therefore c &= T_1 - a - b \\ &= T_1 - \left( \dfrac{D}{2} \right) - \left( d - \dfrac{3}{2}D \right) \\ &= T_1 - \dfrac{D}{2} - d + \dfrac{3}{2}D \\ &= T_1 - d + D \end{align*}

Hence, show that \(T_n = \dfrac{D}{2}n^2 + \left(d - \dfrac{3}{2}D\right)n + \left(T_1 -d + D\right)\).

\begin{align*} T_n &= an^2 + bn +c \\ \therefore T_n &= \dfrac{D}{2}n^2 + \left( d - \dfrac{3}{2}D \right)n + \left( T_1 - d + D \right) \end{align*}